日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 若一個(gè)三角形的三個(gè)內(nèi)角之比是1:2:3,且最小邊的長(zhǎng)度是2
          3
          cm,求最長(zhǎng)邊的高的長(zhǎng)度.
          分析:根據(jù)三角形的三個(gè)內(nèi)角之比是1:2:3,可得三內(nèi)角度數(shù)分別為:30°,60°,90°,然后,根據(jù)直角三角形的邊角關(guān)系及勾股定理,可得到三邊的長(zhǎng),根據(jù)三角形的面積的求法,即可求出最長(zhǎng)邊的高的長(zhǎng)度.
          解答:解:∵三角形的三個(gè)內(nèi)角之比是1:2:3,
          ∴三個(gè)內(nèi)角的度數(shù)分別為:30°,60°,90°,
          ∵最小邊的長(zhǎng)度是2
          3
          cm,
          ∴斜邊的長(zhǎng)度是4
          3
          cm,
          ∴另一條直角邊的長(zhǎng)度是6cm,
          設(shè)最長(zhǎng)邊的高的長(zhǎng)度為xcm,
          ∴4
          3
          x=2
          3
          ×6,
          解得,x=3;
          答:最長(zhǎng)邊的高的長(zhǎng)度是3cm.
          點(diǎn)評(píng):本題主要考查了含30度角的直角三角形,涉及的知識(shí)點(diǎn)有邊角關(guān)系、三角形面積的求法及勾股定理等.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

          精英家教網(wǎng)閱讀材料:如圖1,過(guò)△ABC的三個(gè)頂點(diǎn)分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長(zhǎng)度叫△ABC的“鉛垂高”(h).我們可得出一種計(jì)算三角形面積的新方法:S△ABC=
          12
          ah,即三角形面積等于水平寬與鉛垂高乘積的一半.
          解答下列問(wèn)題:
          如圖2,拋物線頂點(diǎn)坐標(biāo)為點(diǎn)C(1,4),交x軸于點(diǎn)A(3,0),點(diǎn)P是拋物線(在第一象限內(nèi))上的一個(gè)動(dòng)點(diǎn).
          (1)求拋物線的解析式;
          (2)若點(diǎn)B為拋物線與y軸的交點(diǎn),求直線AB的解析式;
          (3)在(2)的條件下,設(shè)拋物線的對(duì)稱軸分別交AB、x軸于點(diǎn)D、M,連接PA、PB,當(dāng)P點(diǎn)運(yùn)動(dòng)到頂點(diǎn)C時(shí),求△CAB的鉛垂高CD及S△CAB;
          (4)在(2)的條件下,設(shè)P點(diǎn)的橫坐標(biāo)為x,△PAB的鉛垂高為h、面積為S,請(qǐng)分別寫出h和S關(guān)于x的函數(shù)關(guān)系式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)某課題學(xué)習(xí)小組在一次活動(dòng)中對(duì)三角形的內(nèi)接正方形的有關(guān)問(wèn)題進(jìn)行了探討:
          定義:如果一個(gè)正方形的四個(gè)頂點(diǎn)都在一個(gè)三角形的邊上,那么我們就把這個(gè)正方形叫做三角形的內(nèi)接正方形.
          結(jié)論:在探討過(guò)程中,有三位同學(xué)得出如下結(jié)果:
          甲同學(xué):在鈍角、直角、不等邊銳角三角形中分別存在
           
          個(gè)、
           
          個(gè)、
           
          個(gè)大小不同的內(nèi)接正方形.
          乙同學(xué):在直角三角形中,兩個(gè)頂點(diǎn)都在斜邊上的內(nèi)接正方形的面積較大.
          丙同學(xué):在不等邊銳角三角形中,兩個(gè)頂點(diǎn)都在較大邊上的內(nèi)接正方形的面積反而較小.
          任務(wù):(1)填充甲同學(xué)結(jié)論中的數(shù)據(jù);
          (2)乙同學(xué)的結(jié)果正確嗎?若不正確,請(qǐng)舉出一個(gè)反例并通過(guò)計(jì)算給予說(shuō)明,若正確,請(qǐng)給出證明;
          (3)請(qǐng)你結(jié)合(2)的判定,推測(cè)丙同學(xué)的結(jié)論是否正確,并證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

          閱讀材料:
          如圖1,過(guò)△ABC的三個(gè)頂點(diǎn)分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長(zhǎng)度叫△ABC的“鉛垂高”(h).我們可得出一種計(jì)算三角形面積的新方法:S△ABC=ah,即三角形面積等于水平寬與鉛垂高乘積的一半.

          解答下列問(wèn)題:
          如圖2,拋物線頂點(diǎn)坐標(biāo)為點(diǎn)C(1,4),交x軸于點(diǎn)A(3,0),點(diǎn)P是拋物線(在第一象限內(nèi))上的一個(gè)動(dòng)點(diǎn).
          (1)求拋物線的解析式;
          (2)若點(diǎn)B為拋物線與y軸的交點(diǎn),求直線AB的解析式;
          (3)設(shè)點(diǎn)P是拋物線(第一象限內(nèi))上的一個(gè)動(dòng)點(diǎn),是否存在一點(diǎn)P,使S△PAB=S△CAB?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          學(xué)習(xí)了勾股定理的逆定理,我們知道:在一個(gè)三角形中,如果兩邊的平方和等于第三邊的平方,那么這個(gè)三角形為直角三角形.類似地,我們定義:對(duì)于任意的三角形,設(shè)其三個(gè)角的度數(shù)分別為x°、y°和z°,若滿足x2+y2=z2,則稱這個(gè)三角形為勾股三角形.
          (1)根據(jù)“勾股三角形”的定義,請(qǐng)你直接判斷命題:“直角三角形是勾股三角形”是真命題還是假命題?
          (2)已知某一勾股三角形的三個(gè)內(nèi)角的度數(shù)從小到大依次為x°、y°和z°,且xy=2160,求x+y的值;
          (3)如圖,△ABC內(nèi)接于⊙O,AB=
          6
          ,AC=1+
          3
          ,BC=2,⊙O的直徑BE交AC于點(diǎn)D.
          ①求證:△ABC是勾股三角形;
          ②求DE的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          已知在直角坐標(biāo)平面內(nèi)有雙曲線y=
          6
          3
          x
          ,另有△ABC,其中點(diǎn)A、B、C的坐標(biāo)分別是A(-2
          2
          ,
          3
          6
          2
          ),B(-2
          2
          ,0),C(0,
          3
          6
          2
          ).
          (1)如果將△ABC沿x軸翻折后得到對(duì)應(yīng)的△A1B1C1 (其中點(diǎn)A、B、C的對(duì)應(yīng)點(diǎn)分別是點(diǎn)A1、B1、C1),問(wèn):△A1B1C1的三個(gè)頂點(diǎn)中,有無(wú)在雙曲線y=
          6
          3
          x
          上的點(diǎn)?若有,寫出這個(gè)點(diǎn)的坐標(biāo).
          (2)如果將△ABC沿x軸正方向平移a個(gè)單位后,使△ABC的一個(gè)頂點(diǎn)落在雙曲線y=
          6
          3
          x
          上,請(qǐng)直接寫出a的值.
          (3)如果△ABC關(guān)于原點(diǎn)O的對(duì)稱的三角形△A2B2C2(其中點(diǎn)A、B、C的對(duì)應(yīng)點(diǎn)分別是點(diǎn)A2、B2、C2),請(qǐng)寫出經(jīng)過(guò)點(diǎn)A、A2的直線所表示的函數(shù)解析式.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案