日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 四邊形ABCD是正方形,E、F分別是DC和CB的延長線上的點,且DE=BF,連接AE、AF、EF.

          (1)求證:△ADE≌△ABF;

          (2)填空:△ABF可以由△ADE繞旋轉(zhuǎn)中心    點,按順時針方向旋轉(zhuǎn)    度得到;

          (3)若BC=8,DE=6,求△AEF的面積.

           

          【答案】

          解:(1)證明:∵四邊形ABCD是正方形,∴AD=AB,∠D=∠ABC=90°。

           又∵點F是CB延長線上的點,∴∠ABF=90°。

          在△ADE和△ABF中,∵,

          ∴△ADE≌△ABF(SAS)。

          (2)A;90。

          (3)∵BC=8,∴AD=8。

          在Rt△ADE中,DE=6,AD=8,∴。

          ∵△ABF可以由△ADE繞旋轉(zhuǎn)中心 A點,按順時針方向旋轉(zhuǎn)90 度得到,

          ∴AE=AF,∠EAF=90°。

          ∴△AEF的面積=AE2=×100=50(平方單位)。

          【解析】

          試題分析:(1)根據(jù)正方形的性質(zhì)得AD=AB,∠D=∠ABC=90°,然后利用“SAS”易證得△ADE≌△ABF。

          (2)∵△ADE≌△ABF,∴∠BAF=∠DAE。

          而∠DAE+∠EBF=90°,∴∠BAF+∠EBF=90°,即∠FAE=90°。

          ∴△ABF可以由△ADE繞旋轉(zhuǎn)中心 A點,按順時針方向旋轉(zhuǎn)90 度得到。

          (3)先利用勾股定理可計算出AE=10,在根據(jù)△ABF可以由△ADE繞旋轉(zhuǎn)中心 A點,按順時針方向旋轉(zhuǎn)90 度得到AE=AF,∠EAF=90°,然后根據(jù)直角三角形的面積公式計算即可!

           

          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          將兩塊大小一樣含30°角的直角三角板,疊放在一起,使得它們的斜邊AB重合,直角邊不重合,已知AB=8,BC=AD=4,AC與BD相交于點E,連接CD.
          精英家教網(wǎng)
          (1)填空:如圖1,AC=
           
          ,BD=
           
          ;四邊形ABCD是
           
          梯形;
          (2)請寫出圖1中所有的相似三角形;(不含全等三角形)
          (3)如圖2,若以AB所在直線為軸,過點A垂直于AB的直線為軸建立如圖2的平面直角坐標系,保持△ABD不動,將△ABC向x軸的正方向平移到△FGH的位置,F(xiàn)H與BD相交于點P,設(shè)AF=t,△FBP面積為S,求S與t之間的函數(shù)關(guān)系式,并寫出t的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          課題學習:
          (1)如圖1,E、F、G、H分別是正方形ABCD各邊的中點,則四邊形EFGH是
          正方
          正方
          形,正方形ABCD的面積記為S1,EFGH的面積為S2,則S1和S2間的數(shù)量關(guān)系:
          S1=2S2
          S1=2S2
          ;
          (2)如圖2,E、F、G、H分別是菱形ABCD各邊的中點,則四邊形EFGH是
          形,菱形ABCD的面積為S1,EFGH的面積為S2,則S1和S2間的數(shù)量關(guān)系:
          S1=2S2
          S1=2S2

          (3)如圖3,梯形ABCD中,AD∥BC,對角線AC⊥BD,垂足為O,E、F、G、H分別為各邊的中點.四邊形EFGH是
          形;若梯形ABCD的面積記為S1,四邊形EFGH的面積記為S2,由圖可猜想S1和S2間的數(shù)量關(guān)系為:
          S1=2S2
          S1=2S2
          ;
          (4)如圖4,E、G分別是平行四邊形ABCD的邊AB、DC的中點,H、F分別是邊形AD、BC上的點,且四邊形EFGH為平行四邊形,若把平行四邊形ABCD的面積記為S1,把平行四邊形形EFGH的面積記為S2,試猜想S1和S2間的數(shù)量關(guān)系,并加以證明.

          查看答案和解析>>

          科目:初中數(shù)學 來源:廣東省中考真題 題型:解答題

          將兩塊大小一樣含30°角的直角三角板,疊放在一起,使得它們的斜邊 AB重合,直角邊不重合,已知AB=8,BC=AD=4,AC與BD相交于點E,連結(jié)CD.
          (1)填空:如圖1,AC= _____,BD=_____ ;四邊形ABCD是_____ 梯形.
          (2)請寫出圖1中所有的相似三角形(不含全等三角形)
          (3)如圖2,若以AB所在直線為x軸,過點A垂直于AB的直線為y軸建立如圖2的平面直角坐標系,保持ΔABD不動,將ΔABC向x軸的正方向平移到ΔFGH的位置,F(xiàn)H與BD相交于點P,設(shè)AF=t,ΔFBP面積為S,求S與t之間的函數(shù)關(guān)系式,并寫出t的取值值范圍.

          查看答案和解析>>

          科目:初中數(shù)學 來源:同步題 題型:解答題

          將兩塊大小一樣含30°角的直角三角板,疊放在一起,使得它們的斜邊AB重合,直角邊不重合,已知AB=8,BC=AD=4,AC與BD相交于點E,連結(jié)CD。
          (1)填空:如圖1,AC=______,BD=______;四邊形ABCD是______梯形;
          (2)請寫出圖1中所有的相似三角形(不含全等三角形);
          (3)如圖2,若以AB所在直線為軸,過點A垂直于AB的直線為軸建立如圖2的平面直角坐標系,保持ΔABD不動,將ΔABC向軸的正方向平移到ΔFGH的位置,F(xiàn)H與BD相交于點P,設(shè)AF=t,ΔFBP面積為S,求S與t之間的函數(shù)關(guān)系式,并寫出t的取值范圍。

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          將兩塊大小一樣含30°角的直角三角板,疊放在一起,使得它們的斜邊

          AB重合,直角邊不重合,已知AB=8,BC=AD=4,AC與BD相交于點E,連結(jié)CD.

          (1)填空:如圖9,AC=         ,BD=         ;四邊形ABCD是       梯形.

          (2)請寫出圖9中所有的相似三角形(不含全等三角形).

          (3)如圖10,若以AB所在直線為軸,過點A垂直于AB的直線為軸建立如圖10的平面直角坐標系,保持ΔABD不動,將ΔABC向軸的正方向平移到ΔFGH的位置,F(xiàn)H與BD相交于點P,設(shè)AF=t,ΔFBP面積為S,求S與t之間的函數(shù)關(guān)系式,并寫出t的取值值范圍.

           


          查看答案和解析>>

          同步練習冊答案