日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,拋物線與x軸交于點A(1,0)和B(4,0)

          (1)求拋物線的解析式;

          (2)若拋物線的對稱軸交x軸于點E,點F是位于x軸上方對稱軸上一點,F(xiàn)Cx軸,與對稱軸右側(cè)的拋物線交于點C,且四邊形OECF是平行四邊形,求點C的坐標(biāo);

          (3)在(2)的條件下,拋物線的對稱軸上是否存在點P,使OCP是直角三角形?若存在,求出點P的坐標(biāo);若不存在,請說明理由

          【答案】(1) 拋物線的解析式為y= x2-x+2;(2) 點C的坐標(biāo)為(5,2);(3) 存在點P(,-)或(,)或(,)或(,

          【解析

          試題分析:(1)把點A、B的坐標(biāo)代入函數(shù)解析式,解方程組求出a、b的值,即可得解;

          (2)根據(jù)拋物線解析式求出對稱軸,再根據(jù)平行四邊形的對角線互相平分求出點C的橫坐標(biāo),然后代入函數(shù)解析式計算求出縱坐標(biāo),即可得解;

          (3)設(shè)AC、EF的交點為D,根據(jù)點C的坐標(biāo)寫出點D的坐標(biāo),然后分點O是直角頂點時,求出OED和PEO相似,根據(jù)相似三角形對應(yīng)邊成比例求出PE,然后寫出點P的坐標(biāo)即可;點C是直角頂點時,同理求出PF,再求出PE,然后寫出點P的坐標(biāo)即可;點P是直角頂點時,利用勾股定理列式求出OC,然后根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得PD=OC,再分點P在OC的上方與下方兩種情況寫出點P的坐標(biāo)即可

          試題解析:(1)把點A(1,0)和B(4,0)代入y=ax2+bx+2得,

          ,

          解得,

          所以,拋物線的解析式為y=x2-x+2;

          (2)拋物線的對稱軸為直線x=,

          四邊形OECF是平行四邊形,

          點C的橫坐標(biāo)是×2=5,

          點C在拋物線上,

          y=×52-×5+2=2,

          點C的坐標(biāo)為(5,2);

          (3)設(shè)OC與EF的交點為D,

          點C的坐標(biāo)為(5,2),

          點D的坐標(biāo)為(,1),

          點O是直角頂點時,易得OED∽△PEO,

          ,

          解得PE=,

          所以,點P的坐標(biāo)為(,-);

          點C是直角頂點時,同理求出PF=,

          所以,PE=+2=,

          所以,點P的坐標(biāo)為(,);

          點P是直角頂點時,由勾股定理得,OC=,

          PD是OC邊上的中線,

          PD=OC=

          若點P在OC上方,則PE=PD+DE=+1,

          此時,點P的坐標(biāo)為(,),

          若點P在OC的下方,則PE=PD-DE=-1,

          此時,點P的坐標(biāo)為(,),

          綜上所述,拋物線的對稱軸上存在點P(,-)或(或(,)或(,,使OCP是直角三角形

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知ACBC于C,BC=a,CA=b,AB=c,下列圖形中O與ABC的某兩條邊或三邊所在的直線相切,則O的半徑為的是(  )

          A. B. C. D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】目前節(jié)能燈在城市已基本普及,今年云南省面向縣級及農(nóng)村地區(qū)推廣,為相應(yīng)號召,某商場計劃用3800元購進節(jié)能燈120只,這兩種節(jié)能燈的進價、售價如下表:

          1)求甲、乙兩種節(jié)能燈各進多少只?

          2)全部售完120只節(jié)能燈后,該商場獲利潤多少元?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】網(wǎng)癮低齡化問題已經(jīng)引起社會各界的高度關(guān)注,有關(guān)部門在全國范圍內(nèi)對1235歲的網(wǎng)癮人群進行了簡單的隨機抽樣調(diào)查,繪制出以下兩幅統(tǒng)計圖.

          請根據(jù)圖中的信息,回答下列問題:

          1)這次抽樣調(diào)查中共調(diào)查了   人,并請補全條形統(tǒng)計圖;

          2)扇形統(tǒng)計圖中1823歲部分的圓心角的度數(shù)是   度;

          3)據(jù)報道,目前我國1235網(wǎng)癮人數(shù)約為2000萬,請估計其中1217歲的人數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知如圖,邊長為2的正方形中,是對角線上的一個動點(與點、不重合),過點,交射線于點,過點,垂足為點.

          1)求證:

          2)在點的運動過程中,的長度是否發(fā)生變化?若不變,試求出這個不變的值,寫出解答過程:若變化,試說明理由:

          3)在點的運動過程中,能否為等腰三角形?如果能,直接寫出此時的長;如果不能,試說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】墊球是排球隊常規(guī)訓(xùn)練的重要項目之一.下列圖表中的數(shù)據(jù)是甲、乙、丙三人每人十次墊球測試的成績.測試規(guī)則為連續(xù)接球10,每墊球到位1個記1

          (1)寫出運動員甲測試成績的眾數(shù)為_________;運動員乙測試成績的中位數(shù)為_________;運動員丙測試成績的平均數(shù)為_________;

          (2)經(jīng)計算三人成績的方差分別為S2=0.8、S2=0.4、S2=0.8,請綜合分析,在他們?nèi)酥羞x擇一位墊球成績優(yōu)秀且較為穩(wěn)定的接球能手作為自由人,你認(rèn)為選誰更合適?為什么?

          (3)甲、乙、丙三人相互之間進行墊球練習(xí),每個人的球都等可能的傳給其他兩人球最先從甲手中傳出,第三輪結(jié)束時球回到甲手中的概率是多少?(用樹狀圖或列表法解答

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖拋物線ly=﹣x2+bx+cb,c為常數(shù)),其頂點E在正方形ABCD內(nèi)或邊上,已知點A(1,2),B(1,1),C(2,1).

          (1)直接寫出點D的坐標(biāo)_____________;

          (2)l經(jīng)過點BC,l的解析式;

          (3)設(shè)lx軸交于點M,N,當(dāng)l的頂點E與點D重合時,求線段MN的值;當(dāng)頂點E在正方形ABCD內(nèi)或邊上時,直接寫出線段MN的取值范圍

          (4)l經(jīng)過正方形ABCD的兩個頂點,直接寫出所有符合條件的c的值

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,下列結(jié)論:

          (1)c<0;

          (2)b>0;

          (3)4a+2b+c>0;

          (4)(a+c)2<b2

          其中不正確的有( 。

          A. 1 B. 2 C. 3 D. 4

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】觀察下面的點陣圖和相應(yīng)的等式,探究其中的規(guī)律:

          (1)認(rèn)真觀察,并在④后面的橫線上寫出相應(yīng)的等式.

          1=1 1+2==3 1+2+3==6    

          (2)結(jié)合(1)觀察下列點陣圖,并在⑤后面的橫線上寫出相應(yīng)的等式.

          1=121+3=223+6=326+10=42   

          (3)通過猜想,寫出(2)中與第n個點陣相對應(yīng)的等式   

          【答案】(1)10;(2)見解析;(3)

          【解析】試題分析:(1)根據(jù)①②③觀察會發(fā)現(xiàn)第四個式子的等號的左邊是1+2+3+4,右邊分子上是(1+4)×4,從而得到規(guī)律;

          (2)通過觀察發(fā)現(xiàn)左邊是10+15,右邊是255的平方;

          (3)過對一些特殊式子進行整理、變形、觀察、比較,歸納出一般規(guī)律.

          試題解析:(1)根據(jù)題中所給出的規(guī)律可知:1+2+3+4==10;

          (2)由圖示可知點的總數(shù)是5×5=25,所以10+15=52

          (3)由(1)(2)可知

          點睛:主要考查了學(xué)生通過特例分析從而歸納總結(jié)出一般結(jié)論的能力.對于找規(guī)律的題目首先應(yīng)找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.通過分析找到各部分的變化規(guī)律后用一個統(tǒng)一的式子表示出變化規(guī)律是此類題目中的難點.

          型】解答
          結(jié)束】
          19

          【題目】如圖,用細(xì)線懸掛一個小球,小球在豎直平面內(nèi)的A、C兩點間來回擺動,A點與地面距離AN=14cm,小球在最低點B時,與地面距離BM=5cm,AOB=66°,求細(xì)線OB的長度.(參考數(shù)據(jù):sin66°≈0.91,cos66°≈0.40,tan66°≈2.25)

          查看答案和解析>>

          同步練習(xí)冊答案