日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖所示,D、E分別是△ABC的邊BC、AC上的點(diǎn),且AB=AC,AD=AE.

          (1)若∠BAD=20°,則∠EDC= °.

          (2)若∠EDC=20°,則∠BAD= °.

          (3)設(shè)∠BAD=α,EDC=β,你能由(1)(2)中的結(jié)果找到α、β間所滿足的關(guān)系嗎?請說明理由.

          【答案】(1)10°;(2)40°;(3)α=2β .

          【解析】

          問題即是弄清∠CDE與∠BAD、∠DAE、∠ADE的大小關(guān)系,通過等邊對等角及外角與內(nèi)角的關(guān)系探索求解.

          :(1)∵AB=AC,∴∠B=∠C,

          ∵AD=AE,∴∠ADE=∠AED,

          又∵∠ADC=∠B+∠BAD,∠AED=∠C+∠EDC,

          ∴∠ADE+∠EDC=∠B+∠BAD,

          即∠C+∠EDC+∠EDC=∠B+∠BAD,

          ∴2∠EDC=∠BAD,

          BAD=20°

          ∴∠EDC=10;

          (2) ∵AB=AC,∴∠B=∠C,

          ∵AD=AE,∴∠ADE=∠AED,

          又∵∠ADC=∠B+∠BAD,∠AED=∠C+∠EDC,

          ∴∠ADE+∠EDC=∠B+∠BAD,

          即∠C+∠EDC+∠EDC=∠B+∠BAD,

          ∴2∠EDC=∠BAD,

          EDC=20°

          BAD=40°

          (3)設(shè)∠BAD=α,EDC=β,則,α=2β.

          證明:∵AB=AC,

          ∴∠B=C,

          又∵∠ADC=BAD+B ,

          ∴∠ADC=BAD+C……①,

          AD=AE,

          ∴∠ADE=AED,

          ∵∠ADC=EDC+ADE,

          ∴∠ADC=EDC+AED,

          又∵∠AED=EDC+C,

          ∴∠ADC=EDC+EDC+C=2EDC+C……②,

          由①②得:∠BAD+C=2EDC+C,

          所以:∠BAD=2EDC,

          結(jié)論:α=2β.

          故答案為(1)10°;(2)40°;(3)α=2β.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,MN是⊙O的直徑,MN=2,點(diǎn)A在⊙O上,∠AMN=30°,B的中點(diǎn),P是直徑MN上一動(dòng)點(diǎn),則PA+PB的最小值為( 。

          A. B. C. 1 D. 2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(4,5)、B(1,0)、C(4,0).

          (1)畫出△ABC關(guān)于y軸的對稱圖形△A1B1C1,并寫出A1點(diǎn)的坐標(biāo);

          (2)y軸上求作一點(diǎn)P,使△PAB的周長最小,并求出點(diǎn)P的坐標(biāo)及△PAB的周長最小值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,己知為等腰三角形且面積為,滿足條件的點(diǎn)有( )

          A.個(gè)B.個(gè)C.個(gè)D.個(gè)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知Rt△ABC, ∠C=90°,CD 是AB邊上的高, AC=4cm,BC=3cm,以點(diǎn)C為圓心作⊙C,使A、B、D三點(diǎn)至少有一個(gè)在圓內(nèi),且至少有一個(gè)在圓外,則⊙C半徑r范圍是_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,直線a,b,c表示三條公路,現(xiàn)要建一個(gè)貨物中轉(zhuǎn)站,要求它到三條公路的距離相等,則可供選擇的地址有_________處。(填數(shù)字)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,要設(shè)計(jì)一個(gè)等腰梯形的花壇,花壇上底米,下底米,上下底相距米,在兩腰中點(diǎn)連線(虛線)處有一條橫向甬道,上下底之間有兩條縱向甬道,各甬道的寬度相等.設(shè)甬道的寬為米.

          用含的式子表示橫向甬道的面積;

          當(dāng)三條甬道的面積是梯形面積的八分之一時(shí),求甬道的寬;

          根據(jù)設(shè)計(jì)的要求,甬道的寬不能超過米.如果修建甬道的總費(fèi)用(萬元)與甬道的寬度成正比例關(guān)系,比例系數(shù)是,花壇其余部分的綠化費(fèi)用為每平方米萬元,那么當(dāng)甬道的寬度為多少米時(shí),所建花壇的總費(fèi)用最少?最少費(fèi)用是多少萬元?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】(1)探索發(fā)現(xiàn)

          如圖1,在△ABC中,點(diǎn)D在邊BC上,△ABD△ADC面積分別記為S1S2,試判斷的數(shù)量關(guān)系,并說明理由.

          (2)閱讀分析

          小東遇到這樣一個(gè)問題:如圖2,在Rt△ABC中,AB=AC,∠BAC=90°,射線AMBC于點(diǎn)D,點(diǎn)E,FAM上,且∠CEM=BFM=90°,試判斷BF,CE,EF三條線段之間的數(shù)量關(guān)系.

          小東利用一對全等三角形,經(jīng)過推理使問題得以解決.

          填空:①圖2中的一對全等三角形為_________;

          BF,CE,EF三條線段之間的數(shù)量關(guān)系為__________________.

          (3)類比探究

          如圖3,在四邊形ABCD中,AB=AD,ACBD交于點(diǎn)O,點(diǎn)E、F在射線AC上,且∠BCF=DEF=BAD.

          判斷BC,DE,CE三條線段之間的數(shù)量關(guān)系,并說明理由;

          ②若OD=3OB,△AED的面積為2,直接寫出四邊形ABCD的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).

          (1)在圖中作出ABC關(guān)于y軸的對稱圖形A1B1C1;

          (2)在y軸上找出一點(diǎn)P,使得PA+PB的值最小,直接寫出點(diǎn)P的坐標(biāo);

          (3)在平面直角坐標(biāo)系中,找出一點(diǎn)A2,使A2BCABC關(guān)于直線BC對稱,直接寫出點(diǎn)A2的坐標(biāo).

          查看答案和解析>>

          同步練習(xí)冊答案