日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,⊙M與菱形ABCD在平面直角坐標(biāo)系中,點(diǎn)M的坐標(biāo)為(﹣3,1),點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)B的坐標(biāo)為(1,﹣ ),點(diǎn)D在x軸上,且點(diǎn)D在點(diǎn)A的右側(cè).

          (1)求菱形ABCD的周長(zhǎng);
          (2)若⊙M沿x軸向右以每秒2個(gè)單位長(zhǎng)度的速度平移,菱形ABCD沿x軸向左以每秒3個(gè)單位長(zhǎng)度的速度平移,設(shè)菱形移動(dòng)的時(shí)間為t(秒),當(dāng)⊙M與AD相切,且切點(diǎn)為AD的中點(diǎn)時(shí),連接AC,求t的值及∠MAC的度數(shù);
          (3)在(2)的條件下,當(dāng)點(diǎn)M與AC所在的直線的距離為1時(shí),求t的值.

          【答案】
          (1)解:過(guò)點(diǎn)B作BE⊥AD,垂足為E.

          ∵B(1,﹣ ),A(2,0),

          ∴BE= ,AE=1.

          ∴AB= =2.

          ∵四邊形ABCD為菱形,

          ∴AB=BC=CD=AD.

          ∴菱形的周長(zhǎng)=2×4=8.


          (2)解:如圖2所示:⊙M與x軸的切線為F,AD的中點(diǎn)為E.

          ∵M(jìn)(﹣3,1),

          ∴F(﹣3,0).

          ∵AD=2,且E為AD的中點(diǎn),

          ∴E(3,0).

          ∴EF=6.

          ∴2t+3t=6.

          解得:t=

          平移的圖形如圖3所示:過(guò)點(diǎn)B作BE⊥AD,垂足為E,連接MF,F(xiàn)為⊙M與AD的切點(diǎn).

          ∵由(1)可知;AE=1,BE=

          ∴tan∠EAB=

          ∴∠EAB=60°.

          ∴∠FAB=120°.

          ∵四邊形ABCD是菱形,

          ∴∠FAC= ∠FAB= ×120°=60°.

          ∵AD為⊙M的切線,

          ∴MF⊥AD.

          ∵F為AD的中點(diǎn),

          ∴AF=MF=1.

          ∴△AFM為等腰直角三角形.

          ∴∠MAF=45°.

          ∴∠MAC=∠MAF+∠FAC=45°+60°=105°.


          (3)解:如圖4所示:連接AM,過(guò)點(diǎn)作MN⊥AC,垂足為N,作ME⊥AD,垂足為E.

          ∵四邊形ABCD為菱形,∠DAB=120°,

          ∴∠DAC=60°.

          ∵AC、AD是圓M的切線,

          ∴∠MAE=30°.

          ∵M(jìn)E=MN=1,

          ∴EA=

          ∴3t+2t=5﹣

          ∴t=1﹣

          如圖5所示:連接AM,過(guò)點(diǎn)作MN⊥AC,垂足為N,作ME⊥AD,垂足為E.

          ∵四邊形ABCD為菱形,∠DAB=120°,

          ∴∠DAC=60°.

          ∴∠NAE=120°.

          ∵AC、AD是圓M的切線,

          ∴∠MAE=60°.

          ∵M(jìn)E=MN=1,

          ∴EA=

          ∴3t+2t=5+

          ∴t=1+

          綜上所述當(dāng)t=1﹣ 或t=1+ 時(shí),圓M與AC相切.


          【解析】(1)過(guò)點(diǎn)B作BE⊥AD,垂足為E.由A、B的坐標(biāo)和勾股定理可求出AB的長(zhǎng),進(jìn)而可得菱形ABCD的周長(zhǎng);
          (2)設(shè)⊙M與x軸的切線為F,AD的中點(diǎn)為E.根據(jù)題意易求出EF的長(zhǎng),從而求出t的值;過(guò)點(diǎn)B作BE⊥AD,垂足為E,連接MF,F(xiàn)為⊙M與AD的切點(diǎn).根據(jù)AD是圓M的切線和菱形的性質(zhì),可證得△AFM為等腰直角三角形,從而求得∠MAC的度數(shù);
          (3)在圖4和圖5中,連接AM,過(guò)點(diǎn)作MN⊥AC,垂足為N,作ME⊥AD,垂足為E.圖4中,由四邊形ABCD為菱形,可得∠DAC=60°,再由AC、AD是圓M的切線,可得∠MAE=30°,由三角函數(shù)可得EA的長(zhǎng),再由3t+2t=5-AE可求出t的值;圖5中,同理先求出AEden長(zhǎng),再由3t+2t=5+AE求出t的值.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】用適當(dāng)?shù)牟坏仁奖硎鞠铝胁坏汝P(guān)系:

          (1)x減去6大于12;

          (2)x的2倍與5的差是負(fù)數(shù);

          (3)x的3倍與4的和是非負(fù)數(shù);

          (4)y的5倍與9的差不大于

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】今年五一節(jié),小明外出爬山,他從山腳爬到山頂?shù)倪^(guò)程中,中途休息了一段時(shí)間設(shè)他從山腳出發(fā)后所用的時(shí)間為t分鐘),所走的路程為s),s與t之間的函數(shù)關(guān)系如圖所示,下列說(shuō)法錯(cuò)誤的是( )

          A小明中途休息用了20分鐘

          B小明休息前爬山的平均速度為每分鐘70米

          C小明在上述過(guò)程中所走的路程為6600米

          D小明休息前爬山的平均速度大于休息后爬山的平均速度

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,把一塊等腰直角三角形零件(ABC,其中∠ACB90°),放置在一凹槽內(nèi),三個(gè)頂點(diǎn)AB,C分別落在凹槽內(nèi)壁上,已知∠ADE=∠BED90°,測(cè)得AD5cmBE7cm,求該三角形零件的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知AB是⊙O的直徑,過(guò)O點(diǎn)作OP⊥AB,交弦AC于點(diǎn)D,交⊙O于點(diǎn)E,且使∠PCA=∠ABC.

          (1)求證:PC是⊙O的切線;
          (2)若∠P=60°,PC=2,求PE的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,矩形ABCD中,AB=8,BC=6.點(diǎn)E在邊AB上,點(diǎn)F在邊CD上,點(diǎn)G、H在對(duì)角線AC上.若四邊形EGFH是菱形,則AE的長(zhǎng)是( )

          A.2
          B.3
          C.
          D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】ABC中,∠ACB=90°,AC=BC=4,點(diǎn)DAB的中點(diǎn),M,N分別在BCAC上,且BM=CN現(xiàn)有以下四個(gè)結(jié)論:

          DN=DM NDM=90°; 四邊形CMDN的面積為4④△CMN的面積最大為2.

          其中正確的結(jié)論有(

          A. ①②④; B. ①②③; C. ②③④; D. ①②③④.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】火車站有某公司待運(yùn)的甲種貨物1530噸,乙種貨物1150噸,現(xiàn)計(jì)劃用50節(jié)A,B兩種型號(hào)的車廂將這批貨物運(yùn)至北京已知甲種貨物35噸和乙種貨物15噸可裝滿一節(jié)A型貨廂,甲貨物25噸和乙種貨物35噸可裝滿一節(jié)B型貨廂,按此要求安排A,B兩種貨廂的節(jié)數(shù),共有哪幾種方案?請(qǐng)你設(shè)計(jì)出來(lái).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖1,直線m與直線n垂直相交于O,點(diǎn)A在直線m上運(yùn)動(dòng),點(diǎn)B 在直線n上運(yùn)動(dòng),ACBC分別是∠BAO和∠ABO的角平分線.

          1)求∠ACB的大;

          2)如圖2,若BDAOB的外角∠OBE的角平分線,BDAC相交于點(diǎn)D,點(diǎn)AB在運(yùn)動(dòng)的過(guò)程中,∠ADB的大小是否會(huì)發(fā)生變化?若發(fā)生變化,請(qǐng)說(shuō)明理由;若不發(fā)生變化,試求出其值;

          3)如圖3,過(guò)C作直線與AB交于F,且滿足∠AGO-∠BCF=45°,求證:CFOB

          查看答案和解析>>

          同步練習(xí)冊(cè)答案