日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,AB為半圓O的直徑,點C為半圓上任一點.

          (1)若∠BAC=30°,過點C作半圓O的切線交直線AB于點P.求證:PBC≌△AOC;

          (2)若AB=6,過點CAB的平行線交半圓O于點D.當(dāng)以點A,O,C,D為頂點的四邊形為菱形時,求的長.

          【答案】()證明見解析;(2)π2π.

          【解析】

          (1)根據(jù)圓周角定理得到∠ACB=90°,推出△OBC是等邊三角形,根據(jù)等邊三角形和外角的性質(zhì)得到∠AOC=∠PBC=120°,根據(jù)切線的性質(zhì)得到∠OCP=90°,根據(jù)全等三角形的判定即可得到結(jié)論;(2)根據(jù)菱形的性質(zhì)得到OA=AD=CD=OC,連接OD,得到△AOD與△COD是等邊三角形,根據(jù)等邊三角形的性質(zhì)得到∠AOD=∠COD=60°,求得∠BOC=60°,根據(jù)弧長公式即可得到結(jié)論.

          1)AB為半圓O的直徑,

          ∴∠ACB=90°,

          ∵∠BAC=30°,

          ∴∠ABC=60°,

          OBOC

          ∴△OBC是等邊三角形,

          OCBC,OBCBOC=60°,

          ∴∠AOCPBC=120°,

          CP是⊙O的切線,

          OCPC,

          ∴∠OCP=90°,

          ∴∠ACOPCB,

          PBCAOC中,

          ∴△PBC≌△AOCASA;

          (2)如圖1,連接OD,BD,CD,

          ∵四邊形AOCD是菱形,

          OAADCDOC,

          則,OAODOC

          ∴△AODCOD是等邊三角形,

          ∴∠AODCOD=60°,

          ∴∠BOC=60°,

          的長==π;

          如圖2,同理∠BOC=120°,

          的長==2π,

          綜上所述,的長為π2π.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,點P是⊙O外一點,過點P作⊙O的切線,切點為A,連接PO并延長,交⊙O于B、C兩點.

          (1)求證:△PBA∽△PAC;

          (2)若∠BAP=30°,PB=2,求⊙O的半徑.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,ABDC,BFCE,需要補充一個條件,就能使△ABE≌△DCF,下面幾個答案:AEDFAEDF;ABDCA=∠D.其中正確的是_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某班同學(xué)上學(xué)期全部參加了捐款活動,捐款情況如下統(tǒng)計表:

          金額(元)

          5

          10

          15

          20

          25

          30

          人數(shù)(人)

          8

          12

          10

          6

          2

          2

          (1)求該班學(xué)生捐款額的平均數(shù)和中位數(shù);

          (2)試問捐款額多于15元的學(xué)生數(shù)是全班人數(shù)的百分之幾?

          (3)已知這筆捐款是按3:5:4的比例分別捐給災(zāi)區(qū)民眾、重病學(xué)生、孤老病者三種被資助的對象,問該班捐給重病學(xué)生是多少元?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,以ABC的邊AB為直徑畫⊙O,交AC于點D,半徑OEBD,連接BEDE,BD,設(shè)BEAC于點F,若∠DEBDBC

          (1)求證:BC是⊙O的切線;

          (2)若BFBC=2,求圖中陰影部分的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,半圓O的直徑為ABD是半圓上的一個動點(不與點A,B重合),連接BD并延長至點C,使CDBD,連接AC,過點DDEAC于點E

          (1)請猜想DE與⊙O的位置關(guān)系,并說明理由;

          (2)當(dāng)AB=4,BAC=45°時,求DE的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】中,,,的半徑長是,當(dāng)時,與直線的位置關(guān)系是________;當(dāng)時,與直線的位置關(guān)系是________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知OA,OB是⊙O的半徑,且OAOB,垂足為O,P是射線OA上的一點(點A除外),直線BP交⊙O于點Q,過Q作⊙O的切線交射線OA于點E.

          (1)如圖①,點P在線段OA上,若∠OBQ=15°,求∠AQE的大小;

          (2)如圖②,點POA的延長線上,若∠OBQ=65°,求∠AQE的大。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,AB=12cm,AC⊥AB,BD⊥AB ,AC=BD=9cm,點P在線段AB上以3 cm/s的速度,由AB運動,同時點Q在線段BD上由BD運動.

          (1)若點Q的運動速度與點P的運動速度相等,當(dāng)運動時間t=1(s),△ACP與△BPQ是否全等?說明理由,并直接判斷此時線段PC和線段PQ的位置關(guān)系;

          (2)將 “AC⊥AB,BD⊥AB”改為“∠CAB=∠DBA”,其他條件不變.若點Q的運動速度與點P的運動速度不相等,當(dāng)點Q的運動速度為多少時,能使△ACP與△BPQ全等.

          (3)在圖2的基礎(chǔ)上延長AC,BD交于點E,使C,D分別是AE,BD中點,若點Q以(2)中的運動速度從點B出發(fā),點P以原來速度從點A同時出發(fā),都逆時針沿△ABE三邊運動,求出經(jīng)過多長時間點P與點Q第一次相遇.

          查看答案和解析>>

          同步練習(xí)冊答案