日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖1,在ABC中,BAC=90°,AB=AC,AE是過(guò)A的一條直線,且B,C在AE的異側(cè),BDAE于點(diǎn)D,CEAE于點(diǎn)E

          (1)求證:BD=DE+CE;

          (2)若直線AE繞點(diǎn)A旋轉(zhuǎn)到圖2位置時(shí)(BD<CE),其余條件不變,問(wèn)BD與DE,CE的關(guān)系如何,請(qǐng)證明;

          (3)若直線AE繞點(diǎn)A旋轉(zhuǎn)到圖3時(shí)(BD>CE),其余條件不變,BD與DE,CE的關(guān)系怎樣?請(qǐng)直接寫出結(jié)果,不須證明

          【答案】(1)證明見(jiàn)解析;(2)BD=DE+CE;(3)BD=DE+CE

          【解析】

          試題分析:本題考查了全等三角形的判定和性質(zhì),涉及到直角三角形的性質(zhì)、余角和補(bǔ)角的性質(zhì)等知識(shí)點(diǎn),熟練掌握全等三角形的判定方法是解題的關(guān)鍵

          (1)根據(jù)已知條件易證得BAD=ACE,且根據(jù)全等三角形的判定可證明ABD≌△CAE,根據(jù)各線段的關(guān)系即可得結(jié)論

          (2)BD=DE+CE根據(jù)全等三角形的判定可證明ABD≌△CAE,根據(jù)各線段的關(guān)系即可得結(jié)論

          (3)同上理,BD=DE+CE仍成立

          試題解析:(1)在ABD和CAE中,

          ∵∠CAD+BAD=90°,BAD+ABD=90°,∴∠CAD=ABD

          ADB=AEC=90°,AB=AC,∴△ABD≌△CAE(AAS),

          BD=AE,AD=CE又AE=AD+DE,AE=DE+CE,即BD=DE+CE

          (2)BD=DECE

          ∵∠BAC=90°∴∠BAD+CAE=90°BDDE,∴∠BAD+ABD=90°,

          ∴∠ABD=CAE又AB=AC,ADB=CEA=90°∴△ADB≌△CEABD=AE,AD=CE

          DE=AD+AE,

          DE=CE+BD,即 BD=DECE

          (3)同理:BD=DECE

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】一個(gè)大矩形按如圖方式分割成九個(gè)小矩形,且只有標(biāo)號(hào)為①和②的兩個(gè)小矩形為正方形.在滿足條件的所有分割中,若知道九個(gè)小矩形中n個(gè)小矩形的周長(zhǎng),就一定能算出這個(gè)在大矩形的面積,則n的最小值是 ( )

          A.3
          B.4
          C.5
          D.6

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某校需要招聘一名教師,對(duì)三名應(yīng)聘者進(jìn)行了三項(xiàng)素質(zhì)測(cè)試下面是三名應(yīng)聘者的綜合測(cè)試成績(jī):

          應(yīng)聘者

          成績(jī)

          項(xiàng)目

          A

          B

          C

          基本素質(zhì)

          70

          65

          75

          專業(yè)知識(shí)

          65

          55

          50

          教學(xué)能力

          80

          85

          85

          (1)如果根據(jù)三項(xiàng)測(cè)試的平均成績(jī)確定錄用教師,那么誰(shuí)將被錄用?

          (2)學(xué)校根據(jù)需要,對(duì)基本素質(zhì)、專業(yè)知識(shí)、教學(xué)能力的要求不同,決定按2:1:3的比例確定其重要性,那么哪一位會(huì)被錄用?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】五一節(jié)快到了,甲、乙兩家旅行社為了吸引更多的顧客,分別提出了赴某地旅游的團(tuán)體優(yōu)惠方法,甲旅行社的優(yōu)惠方法是:買4張全票,其余人按半價(jià)優(yōu)惠;乙旅行社的優(yōu)惠方法是:一律按7折優(yōu)惠,已知兩家旅行社的原價(jià)均為每人100元。(旅游人數(shù)超過(guò)4人)

          (1)分別表示出甲旅行社收費(fèi)y1 ,乙旅行社收費(fèi)y2與旅游人數(shù)x的函數(shù)關(guān)系式.

          (2)就參加旅游的人數(shù)討論哪家旅行社的收費(fèi)更優(yōu)惠?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,正方形ABCD的頂點(diǎn)A的坐標(biāo)為(﹣4,8),對(duì)角線AC⊥x軸于點(diǎn)C,點(diǎn)D在y軸上,求直線AB的解析式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】近年來(lái),手機(jī)微信紅包迅速流行起來(lái).去年春節(jié),小米的爺爺也嘗試用微信發(fā)紅包,他分別將10元、30元、60元的三個(gè)紅包發(fā)到只有爺爺、爸爸、媽媽和小米的微信群里,他們每人只能搶一個(gè)紅包,且搶到任何一個(gè)紅包的機(jī)會(huì)均等(爺爺只發(fā)不搶,紅包里錢的多少與搶紅包的先后順序無(wú)關(guān)).
          (1)求小米搶到60元紅包的概率;
          (2)如果小米的奶奶也加入“搶紅包”的微信群,他們四個(gè)人中將有一個(gè)人搶不到紅包,那么這種情況下,求小米和媽媽兩個(gè)人搶到紅包的錢數(shù)之和不少于70元的概率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(﹣2,﹣4),直線x=﹣2與x軸相交于點(diǎn)B,連接OA,拋物線y=﹣x2從點(diǎn)O沿OA方向平移,與直線x=﹣2交于點(diǎn)P,頂點(diǎn)M到點(diǎn)A時(shí)停止移動(dòng).

          (1)線段OA所在直線的函數(shù)解析式是
          (2)設(shè)平移后拋物線的頂點(diǎn)M的橫坐標(biāo)為m,問(wèn):當(dāng)m為何值時(shí),線段PA最長(zhǎng)?并求出此時(shí)PA的長(zhǎng).
          (3)若平移后拋物線交y軸于點(diǎn)Q,是否存在點(diǎn)Q使得△OMQ為等腰三角形?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知∠1和∠2互為補(bǔ)角,∠A=D.求證:ABCD.

          證明:∵∠1與∠CGD是對(duì)頂角,

          ∴∠1=CGD______.

          又∠1和∠2互為補(bǔ)角(已知),

          ∴∠CGD和∠2互為補(bǔ)角,

          AEFD_________,

          ∴∠A=BFD_______.

          ∵∠A=D(已知),

          ∴∠BFD=D_______,

          ABCD______.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,填空:

          (1)若∠4=∠3,則_________,理由是______;

          (2)若∠2=∠E,則_______,理由是____;

          (3)若∠A=∠ABE=180°,則_______,理由是____

          (4)若∠2=∠____,則DA∥EB,理由是____;

          (5)若∠DBC+∠_____=180°,則DB∥EC,理由是____;

          查看答案和解析>>

          同步練習(xí)冊(cè)答案