日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在平面直角坐標(biāo)系xOy中,拋物線ymx2+6mxnm0)與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),頂點(diǎn)為C,拋物線與y軸交于點(diǎn)D,直線BCy軸于E,SABC:SAEC = 23

          1)求點(diǎn)A的坐標(biāo);

          2)將ACO繞點(diǎn)C順時(shí)針旋轉(zhuǎn)一定角度后,點(diǎn)AB重合,此時(shí)點(diǎn)O恰好也在y軸上,求拋物線的解析式.

          【答案】1A-5,0);(2.

          【解析】試題分析:由x=的拋物線的對(duì)稱軸,分兩種情況對(duì)SABCSAEC進(jìn)行討論;

          2由(1知符合要求的點(diǎn)A有兩種情況,分別代入即可求得拋物線的解析式.

          試題解析:(1)拋物線ymx2+6mxnm0),得到對(duì)稱軸x=3,

          ①當(dāng)SABCSAEC=23時(shí),BCCE=23,

          CBBE=21

          OF=3OB=1,即B(-1,0

          A(50),B(1,0)

          ②當(dāng)SABCSAEC=32時(shí),BCCE=32,

          CDBD=21

          A(0),B(0);

          2①當(dāng)A(50),B(1,0)時(shí),

          B(1,0)代人ymx2+6mxn得,n=5m,

          m,n=,

          yx+x+;

          ②當(dāng)A(0),B(,0)時(shí),

          B(,0)代人ymx2+6mxn得,n=m,

          m,n= ,

          yx+x

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】甲、乙兩車從城出發(fā)勻速行駛至城在個(gè)行駛過程中甲乙兩車離開城的距離(單位:千米)與甲車行駛的時(shí)間(單位:小時(shí))之間的函數(shù)關(guān)系如圖所示.則下列結(jié)論: ①兩城相距千米;②乙車比甲車晚出發(fā)小時(shí),卻早到小時(shí);③乙車出發(fā)后小時(shí)追上甲車;④在乙車行駛過程中.當(dāng)甲、乙兩車相距千米時(shí),,其中正確的結(jié)論是_________.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】從邊長為a的正方形中剪掉一個(gè)邊長為b的正方形(如圖1),然后將剩余部分拼成一個(gè)長方形(如圖2).

          (1)探究:上述操作能驗(yàn)證的等式是 ;(請(qǐng)選擇正確的一個(gè))

          A.a(chǎn)2-2ab+b2=(a-b)2 B.a(chǎn)2-b2=(a+b)(a-b)

          C.a(chǎn)2+ab=a(a+b)

          (2)應(yīng)用:利用你從(1)選出的等式,完成下列各題:

          ①已知9x2-4y2=24,3x+2y=6,求3x-2y的值;

          ②計(jì)算:

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖(),在四邊形中,,,,分別是上的點(diǎn),且.探究圖中線段,之間的數(shù)量關(guān)系.小王同學(xué)探究此問題的方法是,延長到點(diǎn),使,連接,先證明,再證明,可得出結(jié)論,他的結(jié)論應(yīng)該是__________

          如圖(),若在四邊形中,,,分別是,上的點(diǎn),且,上述結(jié)論是否仍然成立,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在一張足夠大的紙板上截取一個(gè)面積為3600平方厘米的矩形紙板ABCD,如圖1,再在矩形紙板的四個(gè)角上切去邊長相等的小正方形,再把它的邊沿虛線折起,做成一個(gè)無蓋的長方體紙盒,底面為矩形EFGH,如圖2.設(shè)小正方形的邊長為x厘米.

          (1)當(dāng)矩形紙板ABCD的一邊長為90厘米時(shí),求紙盒的側(cè)面積的最大值;

          (2)當(dāng)EHEF=7:2,且側(cè)面積與底面積之比為9:7時(shí),求x的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,點(diǎn)O為直線AB上一點(diǎn),過點(diǎn)O作射線OC,使BOC135°,將一個(gè)含45°角的直角三角板的一個(gè)頂點(diǎn)放在點(diǎn)O處,斜邊OM與直線AB重合,另外兩條直角邊都在直線AB的下方.

          1)將圖1中的三角板繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,如圖2所示,此時(shí)BOM ;在圖2中,OM是否平分CON?請(qǐng)說明理由;

          2)接著將圖2中的三角板繞點(diǎn)O逆時(shí)針繼續(xù)旋轉(zhuǎn)到圖3的位置所示,使得ONAOC的內(nèi)部,請(qǐng)?zhí)骄浚?/span>AOMCON之間的數(shù)量關(guān)系,并說明理由;

          3)將圖1中的三角板繞點(diǎn)O按每秒4.5°的速度沿逆時(shí)針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,當(dāng)旋轉(zhuǎn)到第 秒時(shí),COMCON互補(bǔ).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】甲騎自行年,乙乘坐汽車從A地出發(fā)沿同一路線勻速前往B地,甲先出發(fā).設(shè)甲行駛的時(shí)間為x(h),甲、乙兩人距出發(fā)點(diǎn)的路程S(km)、S(km)關(guān)于x的函數(shù)圖象如圖1所示,甲、乙兩人之同的距離y(km)關(guān)于x的函數(shù)圖象如圖2所示,請(qǐng)你解決以下問題:

          (1)甲的速度是__________km/h,乙的速度是_______km/h;

          (2)a=_______,b=_______;

          (3)甲出發(fā)多少時(shí)間后,甲、乙兩人第二次相距7.5km?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在ABC中,tanABC=ACB=45°,AD=8AD是邊BC上的高,垂足為D,BE=4,點(diǎn)M從點(diǎn)B出發(fā)沿BC方向以每秒3個(gè)單位的速度運(yùn)動(dòng),點(diǎn)N從點(diǎn)E出發(fā),與點(diǎn)M同時(shí)同方向以每秒1個(gè)單位的速度運(yùn)動(dòng).以MN為邊在BC的上方作正方形MNGH.點(diǎn)M到達(dá)點(diǎn)C時(shí)停止運(yùn)動(dòng),點(diǎn)N也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t(秒)(t0).

          1)當(dāng)t為多少秒時(shí),點(diǎn)H剛好落在線段AB上?

          2)當(dāng)t為多少秒時(shí),點(diǎn)H剛好落在線段AC上?

          3)設(shè)正方形MNGHRtABC重疊部分的圖形的面積為S,求出S關(guān)于t的函數(shù)關(guān)系式并寫出自變量t的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】小明在一次打籃球時(shí),籃球傳出后的運(yùn)動(dòng)路線為如圖所示的拋物線,以小明所站立的位置為原點(diǎn)O建立平面直角坐標(biāo)系,籃球出手時(shí)在O點(diǎn)正上方1m處的點(diǎn)P.已知籃球運(yùn)動(dòng)時(shí)的高度y(m)與水平距離x(m)之間滿足函數(shù)表達(dá)式y=-x2+x+c.

          1求y與x之間的函數(shù)表達(dá)式;

          2球在運(yùn)動(dòng)的過程中離地面的最大高度;

          3小亮手舉過頭頂跳起后的最大高度為BC=2.5m,若小亮要在籃球下落過程中接到球,求小亮離小明的最短距離OB.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案