日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 22、(1)如圖,已知在正方形ABCD中,M是AB的中點(diǎn),E是AB延長(zhǎng)線上一點(diǎn),MN⊥DM且交∠CBE的平分線于N.試判定線段MD與MN的大小關(guān)系;
          (2)若將上述條件中的“M是AB的中點(diǎn)”改為“M是AB上或AB延長(zhǎng)線上任意一點(diǎn)”,其余條件不變.試問(wèn)(1)中的結(jié)論還成立嗎?如果成立,請(qǐng)證明;如果不成立,請(qǐng)說(shuō)明理由.
          分析:(1)取AD的中點(diǎn)H,連接HM,則BM=HD,由已知可推出∠DHM=∠MBN,∠BMN=∠HDM,從而利用ASA判定△DHM≌△MBN,從而得到DM=MN;
          (2)在AD上取一點(diǎn)H,使DH=MB,連接HM,同理可證:△DHM≌△MBN,所以DM=MN;
          (3)在AD延長(zhǎng)線上取點(diǎn)H,使DH=BM,連接HM,同理可證:△DHM≌△MBN,所以DM=MN.
          解答:證明:(1)取AD的中點(diǎn)H,連接HM.
          在△DHM和△MBN中,
          ∵四邊形ABCD是正方形,M為AB的中點(diǎn),
          ∴BM=HD,
          ∵AM=AH,
          ∴△AMH為等腰直角三角形,
          ∴∠DHM=135°,
          而B(niǎo)N是∠CBE的平分線.
          ∴∠MBN=135°,
          ∴∠DHM=∠MBN,
          又∵DM⊥MN,
          ∴∠NMB+∠AMD=90°,
          又∵∠HDM+∠AMD=90°,
          ∴∠BMN=∠HDM,
          ∴△DHM≌△MBN,
          ∴DM=MN;

          (2)DM=MN仍成立.
          在AD上取一點(diǎn)H,使DH=MB,連接HM.
          ∵四邊形ABCD是正方形,BN平分∠CBE,DM⊥MN,
          ∴∠MBN=135°,
          ∵AH=AM,
          ∴∠AHM=45°
          ∴∠DHM=135°,
          ∠BMN+∠AMD=90°,∠HDM+∠AMD=90度,
          ∴∠BMN=∠HDM,
          ∴△DHM≌△MBN,
          ∴DM=MN.
          若點(diǎn)M在AB的延長(zhǎng)線上,
          則在AD延長(zhǎng)線上取點(diǎn)H,使DH=BM,連接HM.
          同理可證:△DHM≌△MBN,
          ∴DM=MN.
          點(diǎn)評(píng):此題主要考查了學(xué)生對(duì)角平分線的性質(zhì),正方形的性質(zhì)及全等三角形的判定等知識(shí)點(diǎn)的綜合運(yùn)用.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,已知:正△OAB的面積為4
          3
          ,雙曲線y=
          k
          x
          經(jīng)過(guò)點(diǎn)B,點(diǎn)P(m,n)(m>0)在雙曲線y=
          k
          x
          上,PC⊥x軸于點(diǎn)C,PD⊥y軸于點(diǎn)D,設(shè)矩形OCPD與正△OAB不重疊部分的面積為S.
          (1)求點(diǎn)B的坐標(biāo)及k的值;
          (2)求m=1和m=3時(shí),S的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知在平面直角坐標(biāo)系xOy中,直角梯形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,OA=AB=2,OC=3,過(guò)點(diǎn)B作BD⊥BC,交OA于點(diǎn)D.將∠DBC繞點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn),角的兩精英家教網(wǎng)邊分別交y軸的正半軸、x軸的正半軸于點(diǎn)E和F.
          (1)求經(jīng)過(guò)A、B、C三點(diǎn)的拋物線的解析式;
          (2)當(dāng)BE經(jīng)過(guò)(1)中拋物線的頂點(diǎn)時(shí),求CF的長(zhǎng);
          (3)在拋物線的對(duì)稱軸上取兩點(diǎn)P、Q(點(diǎn)Q在點(diǎn)P的上方),且PQ=1,要使四邊形BCPQ的周長(zhǎng)最小,求出P、Q兩點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2013•浙江一模)如圖,已知在平面直角坐標(biāo)系中,點(diǎn)A(4,0)、B(-3,0),點(diǎn)C在y軸正半軸上,且tan∠CAO=1,點(diǎn)Q是線段AB上的動(dòng)點(diǎn),過(guò)點(diǎn)Q作QE∥AC交BC于點(diǎn)E.
          (1)求點(diǎn)C的坐標(biāo)及直線BC的解析式;
          (2)連結(jié)CQ,當(dāng)△CQE的面積最大時(shí),求點(diǎn)Q的坐標(biāo);
          (3)若點(diǎn)P是線段AC上的點(diǎn),是否存在這樣的點(diǎn)P,使△PQE成為等腰直角三角形?若存在,試求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,已知在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y=
          mx
          (m≠0)的圖象相交于A、B兩點(diǎn),且A點(diǎn)的坐標(biāo)是(1,2),B點(diǎn)的坐標(biāo)是(-2,w).
          ①求出一次函數(shù)和反比例函數(shù)的解析式;
          ②在x軸的正半軸上找一點(diǎn)C使△AOC的面積等于△ABO的面積,并求出C點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,已知在平面直角坐標(biāo)系中,點(diǎn)A(4,0)、B(-3,0),點(diǎn)C在y軸正半軸上,且tan∠CAO=1,點(diǎn)Q是線段AB上的動(dòng)點(diǎn),過(guò)點(diǎn)Q作QE∥AC交BC于點(diǎn)E.
          (1)求點(diǎn)C的坐標(biāo)及直線BC的解析式;
          (2)連結(jié)CQ,當(dāng)△CQE的面積最大時(shí),求點(diǎn)Q的坐標(biāo);
          (3)若點(diǎn)P是線段AC上的點(diǎn),是否存在這樣的點(diǎn)P,使△PQE成為等腰直角三角形?若存在,試求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案