日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知四邊形ABCD是矩形,延長AB至點F,連結(jié)CF,使得CF=AF,過點A作AE⊥FC于點E.
          (1)求證:AD=AE.
          (2)連結(jié)CA,若∠DCA=70°,求∠CAE的度數(shù).

          【答案】
          (1)證明:連接AC,如圖所示:

          ∵CF=AF,∴∠FCA=∠CAF,

          ∵四邊形ABCD是矩形,∴DC∥AB∴,∠DCA=∠CAF,

          ∴∠FCA=∠DCA,

          ∵AE⊥FC,

          ∴∠CEA=90°,

          ∴∠CDA=∠CEA=90°,

          在△ADC和△CAE 中, ,

          ∴△ADC≌△CAE (AAS),

          ∴AD=AE;


          (2)解:∵△ADC≌△CAE,

          ∴∠CAE=∠CAD,

          ∵四邊形ABCD是矩形,

          ∴∠D=90°,

          ∴∠CAD=90°﹣∠DCA=90°﹣70°=20°,

          ∴∠CAE=20°.


          【解析】(1)由等腰三角形的性質(zhì)和矩形的性質(zhì)證出∠FCA=∠DCA,由AAS證明△ADC≌△CAE,即可得出結(jié)論;(2)由全等三角形的性質(zhì)得出∠CAE=∠CAD,求出∠CAD=90°﹣∠DCA=20°,即可得出答案.
          【考點精析】認真審題,首先需要了解矩形的性質(zhì)(矩形的四個角都是直角,矩形的對角線相等).

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】完成下面的證明:

          如圖,已知,,可推得

          理由如下:∵(已知),

          (等量代換)

          ________________

          ∴∠________

          又∵(已知)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,△ABC中,AB=BC=5,AC=8,將△ABC繞點C順時針方向旋轉(zhuǎn)60°得到△DEC,連接BD,則BD的長度為

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,直線上有,兩點,,是線段上的一點,.

          1 ,

          2)若點是直線上一點,且滿足,求的長;

          3)若動點,分別從點,同時出發(fā),向右運動,點的速度為,點的速度為.設(shè)運動時間為,當點與點重合時,,兩點停止運動.

          ①當為何值時,

          ②當點經(jīng)過點時,動點從點出發(fā),以的速度也向右運動.當點追上點后立即返回,以的速度向點運動,遇到點后再立即返回,以的速度向點運動,如此往返.當點與點重合時,兩點停止運動,此時點也停止運動.在此過程中,請直接寫出點運動的總路程.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】根據(jù)要求進行計算:
          (1)計算: +(﹣2017)0﹣4sin45°
          (2)化簡:m(1﹣m)+(m﹣2)2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】重百沃爾瑪兩家超市出售同樣的保溫壺和水杯,保溫壺和水杯在兩家超市的售價分別一樣.已知買1個保溫壺和1個水杯要花費60元,買2個保溫壺和3個水杯要花費130元.

          1)請問:一個保溫壺與一個水杯售價各是多少元;(列方程組求解)

          2)為了迎接五一勞動節(jié),兩家超市都在搞促銷活動,重百超市規(guī)定:這兩種商品都打九折;沃爾瑪超市規(guī)定:買一個保溫壺贈送一個水杯.若某單位想要買4個保溫壺和15個水杯,如果只能在一家超市購買,請問選擇哪家超市購買更合算,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】A(0,4),B(2,1)是直角坐標系中的兩個點.

          (1)請在平面直角坐標系中描出A,B兩點,并畫出直線AB;

          (2)寫出B點關(guān)于y軸的對稱點B′的坐標   ;

          (3)求出直線ABx軸的交點坐標   

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】正方形A1B1C1OA2B2C2C1,A3B3C3C2,…按如圖所示的方式放置.點A1A2A3,…和點C1C2,C3,…分別在直線ykx+bk>0)和x軸上,已知點B1(1,1),B2(3,2),則點B3的坐標是_____;點B2018的坐標是_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】閱讀:對于函數(shù)y=ax2+bx+c(a≠0),當t1≤x≤t2時,求y的最值時,主要取決于對稱軸x=﹣ 是否在t1≤x≤t2的范圍和a的正負:①當對稱軸x=﹣ 在t1≤x≤t2之內(nèi)且a>0時,則x=﹣ 時y有最小值,x=t1或x=t2時y有最大值;②當對稱軸x=﹣ 在t1≤x≤t2之內(nèi)且a<0時,則x=﹣ 時y有最大值,x=t1或x=t2時y有最小值;③當對稱軸x=﹣ 不在t1≤x≤t2之內(nèi),則函數(shù)在x=t1或x=t2時y有最值.
          解決問題:
          設(shè)二次函數(shù)y1=a(x﹣2)2+c(a≠0)的圖象與y軸的交點為(0,1),且2a+c=0.
          (1)求a、c的值;
          (2)當﹣2≤x≤1時,直接寫出函數(shù)的最大值和最小值;
          (3)對于任意實數(shù)k,規(guī)定:當﹣2≤x≤1時,關(guān)于x的函數(shù)y2=y1﹣kx的最小值稱為k的“特別值”,記作g(k),求g(k)的解析式;
          (4)在(3)的條件下,當“特別值”g(k)=1時,求k的值.

          查看答案和解析>>

          同步練習(xí)冊答案