日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在水平桌面上的兩個(gè)“E”,當(dāng)點(diǎn)P1,P2,O在一條直線上時(shí),在點(diǎn)O處用①號(hào)“E”(大“E”)測得的視力與用②號(hào)“E”(小“E”)測得的視力效果相同.
          (1)△P1D1O與△P2D2O相似嗎?
          (2)圖中b1,b2,l1,l2滿足怎樣的關(guān)系式?
          (3)若b1=3.2cm,b2=2cm,①號(hào)“E”的測量距離l1=8m,要使得測得的視力相同,則②號(hào)“E”的測量距離l2應(yīng)為多少?

          解:(1)相似.
          ∵兩個(gè)“E”均與桌面垂直,
          ∴它們與水平桌面構(gòu)成的兩個(gè)直角三角形相似.

          (2)由(1)得△P1D1O∽△P2D2O,
          =,即=

          (3)∵=且b1=3.2cm,b2=2cm,l1=8m=800cm,
          =
          ∴l(xiāng)2=500cm=5m.
          答:②號(hào)“E”的測量距離l2=5m.
          分析:(1)根據(jù)相似三角形的判定定理進(jìn)行判定;
          (2)根據(jù)相似三角形的對應(yīng)邊成比例解答;
          (3)根據(jù)相似三角形的對應(yīng)邊成比例代入數(shù)據(jù)進(jìn)行計(jì)算.
          點(diǎn)評:解答此題的關(guān)鍵是熟知相似三角形的判定定理及性質(zhì).
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)為了測量一個(gè)圓形鐵環(huán)的半徑,某同學(xué)采用了如下辦法:將鐵環(huán)平放在水平桌面上,用一個(gè)銳角為30°的三角板和一個(gè)刻度尺,按如圖所示的方法得到相關(guān)數(shù)據(jù),進(jìn)而可求得鐵環(huán)的半徑,若三角板與圓相切且測得PA=5cm,求鐵環(huán)的半徑.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)要測量一個(gè)圓形鐵環(huán)的半徑,某同學(xué)采用如下方法,將鐵環(huán)平放在水平桌面上,用一個(gè)銳角為30°的三角板和一個(gè)刻度尺,按照如圖的方法測量得PA=5,請問鐵環(huán)的半徑是多少?并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          為了測量一個(gè)圓形鐵環(huán)的半徑,某同學(xué)采用了如下辦法:將鐵環(huán)平放在水平桌面上,用一個(gè)銳角為30°的三角板和一個(gè)刻度尺,按如圖所示的方法得到相關(guān)數(shù)據(jù),進(jìn)而可求得鐵環(huán)的半徑,若測得PA=5cm,則鐵環(huán)的半徑是(  )cm.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•河北)如圖,A是正方體小木塊(質(zhì)地均勻)的一頂點(diǎn),將木塊隨機(jī)投擲在水平桌面上,則A與桌面接觸的概率是
          1
          2
          1
          2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•河北)一透明的敞口正方體容器ABCD-A′B′C′D′裝有一些液體,棱AB始終在水平桌面上,容器底部的傾斜角為α(∠CBE=α,如圖1所示).探究 如圖1,液面剛好過棱CD,并與棱BB′交于點(diǎn)Q,此時(shí)液體的形狀為直三棱柱,其三視圖及尺寸如圖2所示.
          解決問題:
          (1)CQ與BE的位置關(guān)系是
          CQ∥BE
          CQ∥BE
          ,BQ的長是
          3
          3
          dm;
          (2)求液體的體積;(參考算法:直棱柱體積V=底面積S△BCQ×高AB)
          (3)求α的度數(shù).(注:sin49°=cos41°=
          3
          4
          ,tan37°=
          3
          4


          拓展:在圖1的基礎(chǔ)上,以棱AB為軸將容器向左或向右旋轉(zhuǎn),但不能使液體溢出,圖3或圖4是其正面示意圖.若液面與棱C′C或CB交于點(diǎn)P,設(shè)PC=x,BQ=y.分別就圖3和圖4求y與x的函數(shù)關(guān)系式,并寫出相應(yīng)的α的范圍.
          延伸:在圖4的基礎(chǔ)上,于容器底部正中間位置,嵌入一平行于側(cè)面的長方形隔板(厚度忽略不計(jì)),得到圖5,隔板高NM=1dm,BM=CM,NM⊥BC.繼續(xù)向右緩慢旋轉(zhuǎn),當(dāng)α=60°時(shí),通過計(jì)算,判斷溢出容器的液體能否達(dá)到4dm3

          查看答案和解析>>

          同步練習(xí)冊答案