日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,A(22)、ABx軸于點B,ADy軸于點DC(-2,1)為AB的中點,直線CDx軸于點F

          1)求直線CD的函數(shù)關(guān)系式;

          2)過點CCEDF且交x軸于點E,求證:∠ADC=∠EDC;

          3)求點E坐標(biāo);

          4)點P是直線CE上的一個動點,求PBPF的最小值.

          【答案】1y=x+2;(2)證明見解析;(3E0);(4PB+PF的最小值為.

          【解析】

          1)由題意先求出D的坐標(biāo),再利用待定系數(shù)法可求得直線CD的函數(shù)關(guān)系式;

          2)可先證明△ADC≌△BFC,利用全等三角形的性質(zhì)得CF=CD,∠BFC=ADC,從而可證明DE=EF,最后利用等邊對等角及等量代換即可證明∠ADC=EDC;

          3)利用直線CD的函數(shù)關(guān)系式可求出點F坐標(biāo),從而得到OF=4,設(shè)OE=x,則EF=DE=4x,最后在RtDOE中利用勾股定理建立方程即可求出OE得到點E坐標(biāo);

          4)由(2)可知點DF關(guān)于直線CE對稱,連接BD交直線CE于點P,則可知P點即為滿足條件的動點,由勾股定理可求得BD的長,即PB+PF的最小值.

          解:(1)∵A(22),ADy軸于點D,

          D(02),

          設(shè)直線CD解析式為y=kx+b(k≠0),把點D(0,2)C(2,1),代入得:

          解得,

          ∴直線CD的函數(shù)關(guān)系式為y=x+2;

          2)∵CAB的中點,

          AC=BC,

          ADy軸于點D

          ADx軸,

          ABx軸于點B,

          ∴∠A=CBF=90°,

          在△ACD和△BCF中,,

          ∴△ACD≌△BCF(ASA)

          CF=CD,∠BFC=ADC,

          CEDF,

          CE垂直平分DF,

          DE=FE

          ∴∠EDC=EFC,

          ∴∠ADC=EDC;

          3)∵直線CD的函數(shù)關(guān)系式為y=x+2,

          ∴把y=0代入得0=x+2,解得x=4,

          F(-4,0),

          OF=4,

          D0,2),

          OD=2,

          設(shè)OE=x,則EF=DE=4x,

          RtDOE中,,解得x=,即OE=

          E,0);

          4)如圖,連接BD交直線CE于點P,

          由(2)可知點D與點F關(guān)于直線CE對稱,

          PD=PF,

          PB+PF=PB+PDBD,

          A(2,2),ABx軸于點B,

          B(20),

          BD=,

          PB+PF的最小值為.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,拋物線y=x2+bx+cx軸交于A、B兩點,B點坐標(biāo)為(4,0),與y軸交于點C(0,4).

          (1)求拋物線的解析式;

          (2)點Px軸下方的拋物線上,過點P的直線y=x+m與直線BC交于點E,與y軸交于點F,求PE+EF的最大值;

          (3)點D為拋物線對稱軸上一點.

          ①當(dāng)BCD是以BC為直角邊的直角三角形時,直接寫出點D的坐標(biāo);

          ②若BCD是銳角三角形,直接寫出點D的縱坐標(biāo)n的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,直線ABy軸于A0a),交x軸于Bb,0),且ab滿足(ab2+|3a+5b88|0

          1)求點A,B的坐標(biāo);

          2)如圖1,已知點D2,5),求點D關(guān)于直線AB對稱的點C的坐標(biāo).

          3)如圖2,若P是∠OBA的角平分線上的一點,∠APO67.5°,求的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,橫、縱坐標(biāo)都是整數(shù)的點叫作整點,直線ykx3k0),與坐標(biāo)軸圍成的三角形內(nèi)部(不包含邊界)有且只有三個整點,則k的取值范圍是__________.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,方格紙中的每個小方格都是邊長為1個單位長度的正方形,△ABC的頂點都在格點上,建立如圖所示的平面直角坐標(biāo)系.

          (1)將△ABC向左平移7個單位長度后再向下平移3個單位長度,請畫出經(jīng)過兩次平移后得到的△A1B1C1

          (2)以原點O為位似中心,將△ABC縮小,使變換后得到的△A2B2C2與△ABC對應(yīng)邊的比為12.請在網(wǎng)格內(nèi)畫出在第三象限內(nèi)的△A2B2C2,并寫出點A2的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】剪紙是中國傳統(tǒng)的民間藝術(shù),它畫面精美,風(fēng)格獨特,深受大家喜愛,現(xiàn)有三張不透明的卡片,其中兩張卡片的正面圖案為金魚,另外一張卡片的正面圖案為蝴蝶,卡片除正面剪紙圖案不同外,其余均相同.將這三張卡片背面向上洗勻從中隨機抽取一張,記錄圖案后放回,重新洗勻后再從中隨機抽取一張.請用畫樹狀圖(或列表)的方法,求抽出的兩張卡片上的圖案都是金魚的概率.(圖案為金魚的兩張卡片分別記為A1、A2,圖案為蝴蝶的卡片記為B)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】把兩個直角三角形如圖放置,使重合,相交于點,其中,,,

          中線段的長________;________

          如圖,把繞著點逆時針旋轉(zhuǎn),相交于點,若恰好是以為底邊的等腰三角形,求線段的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在中,在邊長為的小正方形組成的網(wǎng)格中,的頂點均在格點上,點軸上,點的坐標(biāo)為

          關(guān)于點中心對稱的點的坐標(biāo)為________;

          繞點順時針旋轉(zhuǎn)后得到,那么點的坐標(biāo)為________;線段在旋轉(zhuǎn)過程中所掃過的面積是________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,是二次函數(shù) y=ax2+bx+ca0)的圖象的一部分,給出下列命題:a+b+c=0;②b2a;③ax2+bx+c=0的兩根分別為﹣31;④a﹣2b+c0.其中正確的命題是  

          A. B. ② ③ C. ③ ④ D.

          查看答案和解析>>

          同步練習(xí)冊答案