日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】(1)如圖1,若COAB,垂足為O,OE、OF分別平分AOCBOC.求EOF的度數(shù);

          (2)如圖2,若AOC=BOD=80°,OE、OF分別平分AODBOC.求EOF的度數(shù);

          (3)若AOC=BOD=α,將BOD繞點(diǎn)O旋轉(zhuǎn),使得射線(xiàn)OC與射線(xiàn)OD的夾角為β,OE、OF分別平分AODBOC.若α+β≤180°,α>β,則EOC= .(用含α與β的代數(shù)式表示)

          【答案】(1)90°(2)80°;(3)

          【解析】

          試題分析:(1)根據(jù)垂直的定義得到AOC=BOC=90°,根據(jù)角平分線(xiàn)的定義即可得到結(jié)論;

          (2)根據(jù)角平分線(xiàn)的定義得到EOD=AOD=×(80+β)=40+β,COF=BOC=×(80+β)=40+β,根據(jù)角的和差即可得到結(jié)論;

          (3)如圖2由已知條件得到AOD=α+β,根據(jù)角平分線(xiàn)的定義得到DOE=(α+β),即可得到結(jié)論.

          解:(1)COAB,

          ∴∠AOC=BOC=90°,

          OE平分AOC,

          ∴∠EOC=AOC=×90°=45°,

          OF平分BOC,

          ∴∠COF=BOC=×90°=45°,

          EOF=EOC+COF=45°+45°=90°;

          (2)OE平分AOD,

          ∴∠EOD=AOD=×(80+β)=40+β,

          OF平分BOC,

          ∴∠COF=BOC=×(80+β)=40+β,

          COE=EODCOD=40+ β﹣β=40﹣β;

          EOF=COE+COF=40 β+40+β=80°;

          (3)如圖2,∵∠AOC=BOD=α,COD=β,

          ∴∠AOD=α+β

          OE平分AOD,

          ∴∠DOE=(α+β),

          ∴∠COE=DOECOD==,

          如圖3,∵∠AOC=BOD=αCOD=β,

          ∴∠AOD=α+β,

          OE平分AOD,

          ∴∠DOE=(α﹣β),

          ∴∠COE=DOE+COD=

          綜上所述:,

          故答案為:

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】對(duì)于實(shí)數(shù)p,q,我們用符號(hào)min{p,q}表示p,q兩數(shù)中較小的數(shù),如min{1,2}=1,因此,min{﹣ ,﹣ }=;若min{(x﹣1)2 , x2}=1,則x=

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在正方形ABCD中,E、F分別為BC、CD的中點(diǎn),連接AE,BF交于點(diǎn)G,將△BCF沿BF對(duì)折,得到△BPF,延長(zhǎng)FP交BA延長(zhǎng)線(xiàn)于點(diǎn)Q,下列結(jié)論正確的個(gè)數(shù)是( )
          ①AE=BF;②AE⊥BF;③sin∠BQP= ;④S四邊形ECFG=2SBGE

          A.4
          B.3
          C.2
          D.1

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知, , 試說(shuō)明BECF

          完善下面的解答過(guò)程,并填寫(xiě)理由或數(shù)學(xué)式

          已知

          AE (  )

          ( 。

          已知

          ( 。

          DCAB( 。

          (  )

          已知

          ( 。

          BECF(  ) .

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知△ABC和△DEF,點(diǎn)E在BC邊上,點(diǎn)A在DE邊上,邊EF和邊AC相交于點(diǎn)G.如果AE=EC,∠AEG=∠B,那么添加下列一個(gè)條件后,仍無(wú)法判定△DEF與△ABC一定相似的是(
          A. =
          B. =
          C. =
          D. =

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知∠AOB=90°,以O為頂點(diǎn)、OB為一邊畫(huà)∠BOC,然后再分別畫(huà)出∠AOC與∠BOC的平分線(xiàn)OM、ON.

          (1)在圖1中,射線(xiàn)OC在∠AOB的內(nèi)部.

          ①若銳角∠BOC=30°,則∠MON= °;

          ②若銳角∠BOC=n°,則∠MON= °.

          (2)在圖2中,射線(xiàn)OC在∠AOB的外部,且∠BOC為任意銳角,求∠MON的度數(shù).

          (3)在(2)中,BOC為任意銳角改為BOC為任意鈍角”,其余條件不變,(圖3),求∠MON的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知:△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,點(diǎn)M是CE的中點(diǎn),連接BM.

          (1)如圖①,點(diǎn)D在AB上,連接DM,并延長(zhǎng)DM交BC于點(diǎn)N,可探究得出BD與BM的數(shù)量關(guān)系為______________;

          (2)如圖②,點(diǎn)D不在AB上,(1)中的結(jié)論還成立嗎?如果成立,請(qǐng)證明;如果不成立,說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在數(shù)學(xué)課上,老師提出如下問(wèn)題: 如圖1,將銳角三角形紙片ABC(BC>AC)經(jīng)過(guò)兩次折疊,得到邊AB,BC,CA上的點(diǎn)D,E,F(xiàn).使得四邊形DECF恰好為菱形.
          小明的折疊方法如下:
          如圖2,(1)AC邊向BC邊折疊,使AC邊落在BC邊上,得到折痕交AB于D; (2)C點(diǎn)向AB邊折疊,使C點(diǎn)與D點(diǎn)重合,得到折痕交BC邊于E,交AC邊于F.
          老師說(shuō):“小明的作法正確.”
          請(qǐng)回答:小明這樣折疊的依據(jù)是

          查看答案和解析>>

          同步練習(xí)冊(cè)答案