日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在四邊形ABCD中,∠ABCBCD90°,點EBC的中點,AEDE

          1)求證:ABEECD;

          2)求證:AE2AB·AD;

          3)若AB1,CD4,求線段AD,DE的長.

          【答案】(1)證明見解析;(2)證明見解析;(3)10.

          【解析】試題分析:(1根據(jù)垂直的定義和直角三角形的性質(zhì),求出∠BAE=CED,然后利用兩角對應(yīng)相等的兩三角形相似可證;

          2)根據(jù)相似三角形的性質(zhì):相似三角形的對應(yīng)邊成比例,以及兩邊對應(yīng)成比例且夾角相等的兩三角形相似,可證明結(jié)論;

          3)根據(jù)相似三角形的性質(zhì),由(2)的結(jié)論ABEAED得到對應(yīng)邊成比例,然后根據(jù)勾股定理求解.

          試題解析:(1)證明:∵AEDE,∴∠AED90°,∴∠AEB+CED=180°-90°=90°,

          ∵∠ABC90°∴∠BAE+AEB=90°,∴∠BAE=CED.

          又∵∠ABCBCD,ABEECD

          (2) ABEECD,

          ∵點EBC的中點,∴BEEC

          又∵∠ABCAED90°,ABEAED

          ,AE2AB·AD

          (3)ABEECD

          AB1,CD4,BEECBE2AB·CD4

          由勾股定理,得AE2AB2+ BE2=5

          AE2AB·AD

          由勾股定理,得

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】計算:

          1)(﹣5)﹣(+3+(﹣9)﹣(﹣7

          2)(+5+(﹣3+(﹣6+(﹣15

          3|6|+(﹣8+|3|

          478×(﹣+(﹣11×(﹣+(﹣33×0.6

          5)(﹣22010×(﹣0.52009+(﹣6×7

          6)﹣14×[2﹣(﹣32]

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,湖心島上有一涼亭,現(xiàn)欲利用湖岸邊的開闊平整地帶,測量涼亭頂端到湖面所在平面的高度AB(見示意圖),可供使用的工具有測傾器、皮尺.

          (1)請你根據(jù)現(xiàn)有條件,設(shè)計一個測量涼亭頂端到湖面所在平面的高度AB的方案,畫出測量方案的平面示意圖,并將測量的數(shù)據(jù)標(biāo)注在圖形上(所測的距離用m,n,…表示,角用α,β,…表示,測傾器高度忽略不計);

          (2)根據(jù)你所測量的數(shù)據(jù),計算涼亭到湖面的高度AB(用字母表示).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】閱讀下列材料,完成相應(yīng)學(xué)習(xí)任務(wù):

          四點共圓的條件

          我們知道,過任意一個三角形的三個頂點能作一個圓,過任意一個四邊形的四個頂點能作一個圓嗎?小明經(jīng)過實踐探究發(fā)現(xiàn):過對角互補的四邊形的四個頂點能作一個圓,下面是小明運用反證法證明上述命題的過程:

          已知:在四邊形ABCD中,∠B+∠D=180°.

          求證:過點A、B、C、D可作一個圓.

          證明:如圖(1),假設(shè)過點A、B、C、D四點不能作一個圓,過A、B、C三點作圓,若點D在圓外,設(shè)AD與圓相交于點E,連接CE,則∠B+∠AEC=180°,而已知∠B+∠D=180°,所以∠AEC=∠D,而AEC是CED的外角,∠AEC>∠D,出現(xiàn)矛盾,故假設(shè)不成立,因此點D在過A、B、C三點的圓上.

          如圖(2)假設(shè)過點A、B、C、D四點不能作一個圓,過A、B、C三點作圓,若點D在圓內(nèi),設(shè)AD的延長線與圓相交于點E,連接CE,則∠B+∠AEC=180°,而已知∠B+∠ADC=180°,所以∠AEC=∠ADC,而ADC是CED的外角,∠ADC>∠AEC,出現(xiàn)矛盾,故假設(shè)不成立,因此點D在過A、B、C三點的圓上.

          因此得到四點共圓的條件:過對角互補的四邊形的四個頂點能作一個圓.

          學(xué)習(xí)任務(wù):

          (1)材料中劃線部分結(jié)論的依據(jù)是   

          (2)證明過程中主要體現(xiàn)了下列哪種數(shù)學(xué)思想:   (填字母代號即可)

          A、函數(shù)思想 B、方程思想 C、數(shù)形結(jié)合思想 D、分類討論思想

          (3)如圖(3),在四邊形ABCD中,∠ABC=∠ADC=90°,∠CAD=16°.AD=BD,則求ADB的大小.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】對于函數(shù),下列結(jié)論正確的是(

          A.它的圖象必經(jīng)過點(-11B.它的圖象不經(jīng)過第三象限

          C.當(dāng)時,D.的值隨值的增大而增大

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知四邊形DFBE是矩形,C,A分別是DFBE延長線上的點, , 求證:

          1AE=CF

          2)四邊形ABCD是平行四邊形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,平行四邊形ABCD的四個內(nèi)角的平分線相交成四邊形EFGH,求證:

          1EG=HF

          2EG=BC-AB

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在正方形ABCD中,點E是射線BC上的點,直線AF與直線AB關(guān)于直線AE對稱,直線AF交射線CD于點F

          (1)如圖①,當(dāng)點E是線段BC的中點時,求證:AF=AB+CF;

          (2)如圖②,當(dāng)∠BAE=30°時,求證:AF=2AB2CF;

          (3)如圖③,當(dāng)∠BAE=60°時,(2)中的結(jié)論是否還成立?若不成立,請判斷AFAB、CF之間的數(shù)量關(guān)系,并加以證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,ABC是等邊三角形,BD是中線,延長BCE,CE=CD,

          1)求證:DB=DE

          2)在圖中過DDFBEBEF,若CF=4,求ABC的周長.

          查看答案和解析>>

          同步練習(xí)冊答案