日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】問(wèn)題背景:已知∠EDF的頂點(diǎn)D在△ABC的邊AB所在直線上(不與A,B重合),DE交AC所在直線于點(diǎn)M,DF交BC所在直線于點(diǎn)N,記△ADM的面積為S1 , △BND的面積為S2

          (1)初步嘗試:如圖①,當(dāng)△ABC是等邊三角形,AB=6,∠EDF=∠A,且DE∥BC,AD=2時(shí),則S1S2=;
          (2)類比探究:在(1)的條件下,先將點(diǎn)D沿AB平移,使AD=4,再將∠EDF繞點(diǎn)D旋轉(zhuǎn)至如圖②所示位置,求S1S2的值;
          (3)延伸拓展:當(dāng)△ABC是等腰三角形時(shí),設(shè)∠B=∠A=∠EDF=α.
          (Ⅰ)如圖③,當(dāng)點(diǎn)D在線段AB上運(yùn)動(dòng)時(shí),設(shè)AD=a,BD=b,求S1S2的表達(dá)式(結(jié)果用a,b和α的三角函數(shù)表示).
          (Ⅱ)如圖④,當(dāng)點(diǎn)D在BA的延長(zhǎng)線上運(yùn)動(dòng)時(shí),設(shè)AD=a,BD=b,直接寫(xiě)出S1S2的表達(dá)式,不必寫(xiě)出解答過(guò)程.

          【答案】
          (1)12
          (2)

          解:如圖2中,設(shè)AM=x,BN=y.

          ∵∠MDB=∠MDN+∠NDB=∠A+∠AMD,∠MDN=∠A,

          ∴∠AMD=∠NDB,∵∠A=∠B,

          ∴△AMD∽△BDN,

          = ,

          =

          ∴xy=8,

          ∵S1= ADAMsin60°= x,S2= DBsin60°= y,

          ∴S1S2= x y= xy=12


          (3)

          解:Ⅰ如圖3中,設(shè)AM=x,BN=y,

          同法可證△AMD∽△BDN,可得xy=ab,

          ∵S1= ADAMsinα= axsinα,S2= DBBNsinα= bysinα,

          ∴S1S2= (ab)2sin2α.

          Ⅱ如圖4中,設(shè)AM=x,BN=y,

          同法可證△AMD∽△BDN,可得xy=ab,

          ∵S1= ADAMsinα= axsinα,S2= DBBNsinα= bysinα,

          ∴S1S2= (ab)2sin2α.


          【解析】解:(1)如圖1中,

          ∵△ABC是等邊三角形,
          ∴AB=CB=AC=6,∠A=∠B=60°,
          ∵DE∥BC,∠EDF=60°,
          ∴∠BND=∠EDF=60°,
          ∴∠BDN=∠ADM=60°,
          ∴△ADM,△BDN都是等邊三角形,
          ∴S1= 22= ,S2= (4)2=4
          ∴S1S2=12,
          所以答案是12.
          【考點(diǎn)精析】本題主要考查了等腰三角形的性質(zhì)和等邊三角形的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱:等邊對(duì)等角);等邊三角形的三個(gè)角都相等并且每個(gè)角都是60°才能正確解答此題.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)A= ÷(a﹣ ).
          (1)化簡(jiǎn)A;
          (2)當(dāng)a=3時(shí),記此時(shí)A的值為f(3);當(dāng)a=4時(shí),記此時(shí)A的值為f(4);… 解關(guān)于x的不等式: ≤f(3)+f(4)+…+f(11),并將解集在數(shù)軸上表示出來(lái).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】小明從家到學(xué)校,先勻速步行到車站,等了幾分鐘后坐上了公交車,公交車沿著公路勻速行駛一段時(shí)間后到達(dá)學(xué)校,小明從家到學(xué)校行駛路程s(m)與時(shí)間t(min)的大致圖象是(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】直線y=kx+b與反比例函數(shù)y= (x>0)的圖象分別交于點(diǎn) A(m,3)和點(diǎn)B(6,n),與坐標(biāo)軸分別交于點(diǎn)C和點(diǎn)D.

          (1)求直線AB的解析式;
          (2)若點(diǎn)P是x軸上一動(dòng)點(diǎn),當(dāng)△COD與△ADP相似時(shí),求點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】計(jì)算:2sin60°+|3﹣ |+(π﹣2)0﹣( ﹣1

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在△ABC中,CD是AB邊上的中線,E是CD的中點(diǎn),過(guò)點(diǎn)C作AB的平行線交AE的延長(zhǎng)線于點(diǎn)F,連接BF.
          (1)求證:CF=AD;
          (2)若CA=CB,∠ACB=90°,試判斷四邊形CDBF的形狀,并說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】若記y=f(x)= ,其中f(1)表示當(dāng)x=1時(shí)y的值, 即f(1)= = ;f( )表示當(dāng)x= 時(shí)y的值,即f( )= ;…;則f(1)+f(2)+f( )+f(3)+f( )+…+f(2011)+f( )=

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】探究題
          (1)問(wèn)題發(fā)現(xiàn):
          如圖1,在正方形ABCD中,點(diǎn)E、F分別是邊BC、AB上的點(diǎn),且CE=BF,連接DE,過(guò)點(diǎn)E作EG⊥DE,使EG=DE,連接FG,F(xiàn)C,請(qǐng)判斷:FG與CE的數(shù)量關(guān)系是 , 位置關(guān)系是

          (2)拓展探究:
          如圖2,若點(diǎn)E、F分別是CB、BA延長(zhǎng)線上的點(diǎn),其它條件不變,(1)中結(jié)論是否仍然成立?請(qǐng)出判斷判斷予以證明;

          (3)類比延伸:
          如圖3,若點(diǎn)E、F分別是BC、AB延長(zhǎng)線上的點(diǎn),其它條件不變,(1)中結(jié)論是否仍然成立?請(qǐng)直接寫(xiě)出你的判斷.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案