【題目】如圖,小山的頂部是一塊平地,在這塊平地上有一高壓輸電的鐵架,小山的斜坡的坡度,斜坡BD的長是50米,在山坡的坡底B處測得鐵架頂端A的仰角為
,在山坡的坡頂D處測得鐵架頂端A的仰角為
,(1)求小山的高度;(2)求鐵架的高度。(結(jié)果保留根號)
【答案】小山的高度為25米,鐵架的高度為米.
【解析】試題分析:
試題解析:(1)利用坡度先求出小三高度.(2) 證明△ADE≌△BDF全等,利用勾股定理求鐵架的高度.
過D作DF⊥BC,交BC于點F,
∵小山的坡面坡度為1:,即tan∠DBF=
,
∴∠DBF=30°,又∠ADE=60°,∠AED=90°,
∴∠DAE=30°,
∵∠CBA=∠CAB=45°,
∴∠CBA-∠DBF=∠CAB-∠DAE,即∠DAB=∠DBA,
∴DB=DA,
在△ADE和△BDF中,
∵∠DAE=∠DBF=30°,∠AED=∠BFD=90°,AD=BD,
∴△ADE≌△BDF(AAS),∴AE=BF,在Rt△BDF中,∠DBF=30°,BD=50米,
∴DF=0.5BD=25米,
根據(jù)勾股定理得:BF=米,則小山的高度為25米,鐵架的高度為
米.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC 中,∠BAC=90°,AB<AC,M 是 BC 邊的中點,MN⊥BC交 AC 于點 N,動點 P 在線段 BA 上以每秒 cm 的速度由點 B 向點 A 運動.同時, 動點 Q 在線段 AC 上由點 N 向點 C 運動,且始終保持 MQ⊥MP. 一個點到終點時,兩個點同時停止運動.設(shè)運動時間為 t 秒(t>0).
(1)△PBM 與△QNM 相似嗎?請說明理由;
(2)若∠ABC=60°,AB=4 cm.
①求動點 Q 的運動速度;
②設(shè)△APQ 的面積為 s(cm2),求 S 與 t 的函數(shù)關(guān)系式.(不必寫出 t 的取值范圍)
(3)探求 BP、PQ、CQ 三者之間的數(shù)量關(guān)系,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中央電視臺的“中國詩詞大賽”節(jié)目文化品位高,內(nèi)容豐富,某校初二年級模擬開展“中國詩詞大賽”比賽,對全年級同學(xué)成績進行統(tǒng)計后分為“優(yōu)秀”、“良好”、“一般”、“較差”四個等級,并根據(jù)成績繪制成如下兩幅不完整的統(tǒng)計圖,請結(jié)合統(tǒng)計圖中的信息,回答下列問題:
(1)扇形統(tǒng)計圖中“優(yōu)秀”所對應(yīng)的扇形的圓心角為 度,并將條形統(tǒng)計圖補充完整.
(2)此次比賽有四名同學(xué)活動滿分,分別是甲、乙、丙、丁,現(xiàn)從這四名同學(xué)中挑選兩名同學(xué)參加學(xué)校舉行的“中國詩詞大賽”比賽,請用列表法或畫樹狀圖法,求出選中的兩名同學(xué)恰好是甲、丁的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果關(guān)于的分式方程
有負分數(shù)解,且關(guān)于
的不等式組
的解集為
,那么符合條件的所有整數(shù)
的積是( )
A. B. 0 C. 3 D. 9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“十一”黃金周期間,某市在天中外出旅游的人數(shù)變化如下表(正數(shù)表示比前一天多的人數(shù),負數(shù)表示比前一天少的人數(shù))
日期 |
|
|
|
|
|
|
|
人數(shù)變化(萬人) |
(1)若月
日外出旅游人數(shù)為
,那么
月
日外出旅游的人數(shù)是多少?
(2)請判斷七天內(nèi)外出旅游人數(shù)最多的是哪天?最少的是哪天?它們相差多少?
(3)如果最多一天有出游人數(shù)萬人,那么若
月
日外出旅游的有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=-x2-
x+
與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸于點C,已知點D(0,-
).
(1)求直線AC的解析式;
(2)如圖1,P為直線AC上方拋物線上的一動點,當△PBD的面積最大時,過P作PQ⊥x軸于點Q,M為拋物線對稱軸上的一動點,過M作y軸的垂線,垂足為點N,連接PM、NQ,求PM+MN+NQ的最小值;
(3)在(2)問的條件下,將得到的△PBQ沿PB翻折得到△PBQ′,將△PBQ′沿直線BD平移,記平移中的△PBQ′為△P′B′Q″,在平移過程中,設(shè)直線P′B′與x軸交于點E,則是否存在這樣的點E,使得△B′EQ″為等腰三角形?若存在,求此時OE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】己知:如圖1,⊙O的半徑為2, BC是⊙O的弦,點A是⊙O上的一動點。
圖1 圖2
(1)當△ABC的面積最大時,請用尺規(guī)作圖確定點A位置(尺規(guī)作圖只保留作圖痕跡, 不需要寫作法);
(2)如圖2,在滿足(1)條件下,連接AO并延長交⊙O于點D,連接BD并延長交AC 的延長線于點E,若∠BAC=45° ,求AC2+CE2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校積極響應(yīng)正在開展的“創(chuàng)文活動”,組織甲、乙兩個志愿工程隊對所在社區(qū)的一些區(qū)域進行綠化改造,已知乙工程隊每小時能完成的綠化面積是甲工程隊每小時能完成的綠化面積的1.5倍,并且乙工程隊完成200平方米的綠化面積比甲工程隊完成200平方米的綠化面積少用2小時,甲工程隊每小時能完成多少平方米的綠化面積?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,點A, 0, B在同一條直線上,OD平分∠AOC, OE平分∠BOC.
(1)若∠B0D=160°,求∠BOE的度數(shù);
(2) 若∠COE比∠COD多60°.求∠COE的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com