日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知:如圖,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點(diǎn)C、D、E三點(diǎn)在同一直線上,連接BD.

          (1)求證:△BAD≌△CAE;

          (2)試猜想BD、CE有何特殊位置關(guān)系,并證明.

          【答案】1)見(jiàn)解析(2BD⊥CE,證明見(jiàn)解析.

          【解析】

          試題(1)要證△BAD≌△CAE,現(xiàn)有AB=AC,AD=AE,需它們的夾角∠BAD=∠CAE,而由∠BAC=∠DAE=90°很易證得.

          2BDCE有何特殊位置關(guān)系,從圖形上可看出是垂直關(guān)系,可向這方面努力.要證BD⊥CE,需證∠BDE=90°,需證∠ADB+∠ADE=90°可由直角三角形提供.

          試題解析:(1)證明:∵∠BAC=∠DAE=90°

          ∴∠BAC+∠CAD=∠DAE+CAD

          ∠BAD=∠CAE,

          ∵AB=AC,AD=AE,

          ∴△BAD≌△CAESAS).

          2BD、CE特殊位置關(guān)系為BD⊥CE

          證明如下:由(1)知△BAD≌△CAE,

          ∴∠ADB=∠E

          ∵∠DAE=90°

          ∴∠E+∠ADE=90°

          ∴∠ADB+∠ADE=90°

          ∠BDE=90°

          ∴BD、CE特殊位置關(guān)系為BD⊥CE

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給下以下結(jié)論:
          ①2a﹣b=0;
          ②abc>0;
          ③4ac﹣b2<0;
          ④9a+3b+c<0;
          ⑤關(guān)于x的一元二次方程ax2+bx+c+3=0有兩個(gè)相等實(shí)數(shù)根;
          ⑥8a+c<0.
          其中正確的個(gè)數(shù)是( )

          A.2
          B.3
          C.4
          D.5

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】反比例函數(shù)y= 的圖象如圖,給出以下結(jié)論:
          ①常數(shù)k<1;
          ②在每一個(gè)象限內(nèi),y隨x的增大而減;
          ③若點(diǎn)A(﹣1,a)和A′(1,b)都在該函數(shù)的圖象上,則a+b=0;
          ④若點(diǎn)B(﹣2,h)、C( ,m)、D(3,n)在該函數(shù)的圖象上,則h<m<n.
          其中正確的結(jié)論是(

          A.①②
          B.②③
          C.③④
          D.②④

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】問(wèn)題背景:

          如圖1,在四邊形ABCD中,ABAD,∠BAD=120°,∠B=∠ADC=90°,EF分別是BC,CD上的點(diǎn),且∠EAF=60°,探究圖中線段BEEF,FD之間的數(shù)量關(guān)系.

          小王同學(xué)探究此問(wèn)題的方法是延長(zhǎng)FD到點(diǎn)G,使DGBE,連結(jié)AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是__________________;

          探索延伸:

          如圖2,若在四邊形ABCD中,ABAD,BD=180°,E,F分別是BC,CD上的點(diǎn),且∠EAFBAD,上述結(jié)論是否仍然成立,并說(shuō)明理由;

          結(jié)論應(yīng)用:

          如圖3,在某次軍事演習(xí)中,艦艇甲在指揮中心(O)北偏西30°A處,艦艇乙在指揮中心南偏東70°B處,并且兩艦艇到指揮中心的距離相等.接到行動(dòng)指令后,艦艇甲向正東方向以50海里/小時(shí)的速度前進(jìn),艦艇乙沿北偏東50°的方向以60海里/小時(shí)的速度前進(jìn),1.5小時(shí)后,指揮中心觀測(cè)到甲、乙兩艦艇分別到達(dá)E,F處,且兩艦艇與指揮中心O之間夾角∠EOF=70°,試求此時(shí)兩艦艇之間的距離.

          能力提高:

          如圖4,等腰直角三角形ABC中,∠BAC=90°,ABAC,點(diǎn)MN在邊BC上,且∠MAN=45°.若BM=5,CN=12,則MN的長(zhǎng)為_________(直接寫出答案)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】大潤(rùn)發(fā)超市進(jìn)了一批成本為8元/個(gè)的文具盒.調(diào)查發(fā)現(xiàn):這種文具盒每個(gè)星期的銷售量y(個(gè))與它的定價(jià)x(元/個(gè))的關(guān)系如圖所示:

          (1)求這種文具盒每個(gè)星期的銷售量y(個(gè))與它的定價(jià)x(元/個(gè))之間的函數(shù)關(guān)系式(不必寫出自變量x的取值范圍);
          (2)每個(gè)文具盒的定價(jià)是多少元時(shí),超市每星期銷售這種文具盒(不考慮其他因素)可獲得的利潤(rùn)為1200元?
          (3)若該超市每星期銷售這種文具盒的銷售量不少于115個(gè),且單件利潤(rùn)不低于4元(x為整數(shù)),當(dāng)每個(gè)文具盒定價(jià)多少元時(shí),超市每星期利潤(rùn)最高?最高利潤(rùn)是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,AD=AE,∠ADC=∠AEB,BECD相交于點(diǎn)O.

          (1)在不添加輔助線的情況下,由已知條件可以得出許多結(jié)論,例如:△ABE≌△ACD、∠DOB=∠EOC、∠DOE=∠BOC等.請(qǐng)你動(dòng)動(dòng)腦筋,再寫出3個(gè)結(jié)論

          (所寫結(jié)論不能與題中舉例相同且只要寫出3個(gè)即可)

          ,② ,③ ,

          (2)請(qǐng)你從自己寫出的結(jié)論中,選取一個(gè)說(shuō)明其成立的理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,過(guò)邊長(zhǎng)為1的等邊△ABC的邊AB上一點(diǎn)P,作PE⊥AC于E,Q為BC延長(zhǎng)線上一點(diǎn),當(dāng)PA=CQ時(shí),連PQ交AC邊于D,則DE的長(zhǎng)為( )

          A. B. C. D. 不能確定

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某中學(xué)為了綠化校園,計(jì)劃購(gòu)買一批榕樹(shù)和香樟樹(shù),經(jīng)市場(chǎng)調(diào)查,榕樹(shù)的單價(jià)比香樟樹(shù)少20,購(gòu)買3棵榕樹(shù)和2棵香樟樹(shù)共需340.

          (1)榕樹(shù)和香樟樹(shù)的單價(jià)各是多少?

          (2)根據(jù)學(xué)校實(shí)際情況,需購(gòu)買兩種樹(shù)苗共150,總費(fèi)用不超過(guò)10840,且購(gòu)買香樟樹(shù)的棵數(shù)不少于榕樹(shù)的1.5,請(qǐng)你算算該校本次購(gòu)買榕樹(shù)和香樟樹(shù)共有哪幾種方案.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知二次函數(shù)y=﹣x2+2x+m.
          (1)如果二次函數(shù)的圖象與x軸有兩個(gè)交點(diǎn),求m的取值范圍;
          (2)如圖,二次函數(shù)的圖象過(guò)點(diǎn)A(3,0),與y軸交于點(diǎn)B,直線AB與這個(gè)二次函數(shù)圖象的對(duì)稱軸交于點(diǎn)P,求點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案