日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖所示,CD為⊙O的直徑,點(diǎn)B在⊙O上,連接BC、BD,過點(diǎn)B的切線AE與CD的延長線交于點(diǎn)A,OE∥BD,交BC于點(diǎn)F,交AB于點(diǎn)E.
          (1)求證:∠E=∠C;
          (2)若⊙O的半徑為3,AD=2,試求AE的長;
          (3)求△ABC的面積.

          【答案】
          (1)證明:如圖1:連接OB.

          ∵CD為圓O的直徑,

          ∴∠CBD=∠CBO+∠OBD=90°.

          ∵AE是圓O的切線,

          ∴∠ABO=∠ABD+∠OBD=90°.

          ∴∠ABD=∠CBO.

          ∵OB=OC,

          ∴∠C=∠CBO.

          ∴∠C=∠ABD.

          ∵OE∥BD,

          ∴∠E=∠ABD.

          ∴∠E=∠C


          (2)解:∵⊙O的半徑為3,AD=2,

          ∴AO=5,∴AB=4.

          ∵BD∥OE,

          ∴BE=OD,

          ∴BE=3,

          ∴BE=6,AE=6+4=10


          (3)解:∵SAOE= AEOB=15,

          ∵∠C=∠E,∠A=∠A,

          ∴△AOE∽△ABC,

          =( 2= ,

          ∴SABC=15× =


          【解析】(1)連接OB.先證明∠ABO、∠CBD均為直角,然后依據(jù)同角的余角相等證明∠ABD=∠CBO,接下來,結(jié)合等腰三角形的性質(zhì)和平行線的性質(zhì)進(jìn)行證明即可;(2)連接OB,先求得AB的長,然后由平行線分線段成比例定理求得BE的長,最后再△BOE中依據(jù)勾股定理可求得OE的長;(3)根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,將平行四邊形ABCD沿對角線BD折疊,使點(diǎn)A落在點(diǎn)A'處.若∠1=∠2=50°,則∠A'為

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,正方形OEFG和正方形ABCD是位似圖形,點(diǎn)F的坐標(biāo)為(﹣1,1),點(diǎn)C的坐標(biāo)為(﹣4,2),則這兩個正方形位似中心的坐標(biāo)是

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】“校園手機(jī)”現(xiàn)象越來越受到社會的關(guān)注.小麗在“統(tǒng)計實(shí)習(xí)”活動中隨機(jī)調(diào)查了學(xué)校若干名學(xué)生家長對“中學(xué)生帶手機(jī)到學(xué)!爆F(xiàn)象的看法,統(tǒng)計整理并制作了如下的統(tǒng)計圖:
          (1)求這次調(diào)查的家長總數(shù)及家長表示“無所謂”的人數(shù),并補(bǔ)全圖①;
          (2)求圖②中表示家長“無所謂”的圓心角的度數(shù);
          (3)從這次接受調(diào)查的家長中,隨機(jī)抽查一個,恰好是“不贊成”態(tài)度的家長的概率是多少.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,拋物線y=ax2+bx+4與x軸交于A(﹣2,0)、B(4、0)兩點(diǎn),與y軸交于C點(diǎn).

          (1)求拋物線的解析式;
          (2)T是拋物線對稱軸上的一點(diǎn),且△ATC是以AC為底的等腰三角形,求點(diǎn)T的坐標(biāo);
          (3)M、Q兩點(diǎn)分別從A、B點(diǎn)以每秒1個單位長度的速度沿x軸同時出發(fā)相向而行,當(dāng)點(diǎn)M到原點(diǎn)時,點(diǎn)Q立刻掉頭并以每秒 個單位長度的速度向點(diǎn)B方向移動,當(dāng)點(diǎn)M到達(dá)拋物線的對稱軸時,兩點(diǎn)停止運(yùn)動,過點(diǎn)M的直線l⊥x軸交AC或BC于點(diǎn)P.求點(diǎn)M的運(yùn)動時間t與△APQ面積S的函數(shù)關(guān)系式,并求出S的最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,正方形A1B1C1D1、D1 E1E2B2、A2B2 C2D2、D2E3E4B3…按如圖所示的方式放置,其中點(diǎn)B1在y軸上,點(diǎn)C1、E1、E2、C2、E3、E4、C3…在x軸上,已知正方形A1B1C1D1的邊長為l,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,則正方形A2017B2017C2017 D2017的邊長是(
          A.( 2016
          B.( 2017
          C.( 2016
          D.( 2017

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,AB是半圓O的直徑,點(diǎn)P是半圓上不與點(diǎn)A、B重合的一個動點(diǎn),延長BP到點(diǎn)C,使PC=PB,D是AC的中點(diǎn),連接PD、PO.
          (1)求證:△CDP≌△POB;
          (2)填空: ①若AB=4,則四邊形AOPD的最大面積為;
          ②連接OD,當(dāng)∠PBA的度數(shù)為時,四邊形BPDO是菱形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,將矩形ABCD沿AF折疊,使點(diǎn)D落在BC邊的點(diǎn)E處,過點(diǎn)E作EG∥CD交AF于點(diǎn)G,連接DG.

          (1)求證:四邊形EFDG是菱形;
          (2)探究線段EG、GF、AF之間的數(shù)量關(guān)系,并說明理由;
          (3)若AG=6,EG=2 ,求BE的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某校團(tuán)委要組織班級歌詠比賽,為了確定一首喜歡人數(shù)最多的歌曲作為每班必唱歌曲,團(tuán)委提供了代號為A,B,C,D四首備選曲目讓學(xué)生選擇(每個學(xué)生只選課一首),經(jīng)過抽樣調(diào)查后,將采集的數(shù)據(jù)繪制如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖1,圖2所提供的信息,解答下列問題:
          (1)在抽樣調(diào)查中,求選擇曲目代號為A的學(xué)生人數(shù)占抽樣總?cè)藬?shù)的百分比;
          (2)請將圖2補(bǔ)充完整;
          (3)若該校共有1530名學(xué)生,根據(jù)抽樣調(diào)查的結(jié)果,估計全校選擇曲目代號為D的學(xué)生有多少名?

          查看答案和解析>>

          同步練習(xí)冊答案