日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 我國著名數(shù)學家華羅庚曾說過:數(shù)缺形時少直觀,形少數(shù)時難入微;數(shù)形結合百般好,隔離分家萬事休.數(shù)學中,數(shù)和形是兩個最主要的研究對象,它們之間有著十分密切的聯(lián)系,在一定條件下,數(shù)和形之間可以相互轉化,相互滲透.

          數(shù)形結合的基本思想,就是在研究問題的過程中,注意把數(shù)和形結合起來考察,斟酌問題的具體情形,把圖形性質的問題轉化為數(shù)量關系的問題,或者把數(shù)量關系的問題轉化為圖形性質的問題,使復雜問題簡單化,抽象問題具體化,化難為易,獲得簡便易行的成功方案.

          例如,求1234n的值,其中n是正整數(shù).

          對于這個求和問題,如果采用純代數(shù)的方法(首尾兩頭加),問題雖然可以解決,但在求和過程中,需對n的奇偶性進行討論.

          如果采用數(shù)形結合的方法,即用圖形的性質來說明數(shù)量關系的事實,那就非常的直觀.現(xiàn)利用圖形的性質來求1234n 的值,方案如下:如圖,斜線左邊的三角形圖案 是由上到下每層依次分別為1,2,3,,n個小圓圈排列組成的.而組成整個三角形小圓圈的個數(shù)恰為所求式子1234n的值.為求式子的值,現(xiàn)把左邊三角形倒放于斜線右邊,與原三角形組成一個平行四邊形.此時,組成平行四邊形的小圓圈共有n行,每行有(n1)個小圓圈,所以組成平行四邊形小圓圈的總個數(shù)為n(n1)個,因此,組成一個三角形小圓圈的個數(shù)為,即

          (1)仿照上述數(shù)形結合的思想方法,設計相關圖形,求1357(2n1)的值,其中 n 是正整數(shù).(要求:畫出圖形,并利用圖形做必要的推理說明)

          (2)試設計另外一種圖形,求1357(2n1)的值,其中n是正整數(shù).(要求:畫出圖形,并利用圖形做必要的推理說明)

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:閱讀理解

          閱讀題:我國著名數(shù)學家華羅庚說過:“數(shù)缺形時少直觀,形小數(shù)時難入微,數(shù)形結合百般好,隔離分家事萬休.”數(shù)形結合的基本思想,就是在研究問題的過程中,注意把數(shù)和形結合起來考察,斟酌問題的具體情形,把圖形性質的問題轉化為數(shù)量關系的問題轉化為圖形性質的問題,使復雜問題簡單化,抽象問題具體化,化難為易,獲得簡便易行的成功方案.
          例:求1+2+3+4+…+n的值,其中n是正整數(shù);
          如果采用數(shù)形結合的方法,現(xiàn)利用圖形的性質來求1+2+3+4+…+n的值,方案如下:
          如圖,斜線左邊的三角形圖案是由上到下每層依次分別為1,2,3…n個小圓圈的個數(shù)恰好為所求式子1+2+3+4+…+n的值,為求式子的值,現(xiàn)把左邊三角形倒放于斜線右邊,與原三角形組成一個平行四邊形小圓圈的總個數(shù)為n(n+1)個,因此,組成一個三角形小圓圈的個數(shù)為
          n(n+1)
          2
          ,即1+2+3+4+…+n=
          n(n+1)
          2

          ①仿照上述數(shù)形結合的思想方法,設計相關圖形,求1+3+5+7+…+(2n-1)的值,其中n為正整數(shù)(要求畫出圖形,寫出結果即可)
          ②試設計另外一種圖形,求1+3+5+7+…+(2n-1)的值,其中n是正整數(shù)(要求畫出圖形,寫出結果即可)
          精英家教網

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:閱讀理解

          我國著名數(shù)學家華羅庚曾說過:“數(shù)缺形時少直觀,形少數(shù)時難入微;數(shù)形結合百般好,隔離分家萬事休”.數(shù)學中,數(shù)和形是兩個最主要的研究對象,它們之間有著十分密切的聯(lián)系,在一定條件下,數(shù)和形之間可以相互轉化,相互滲透.
          數(shù)形結合的基本思想,就是在研究問題的過程中,注意把數(shù)和形結合起來考察,斟酌問題的具體情形,把圖形性質的問題轉化為數(shù)量關系的問題,或者把數(shù)量關系的問題轉化為圖形性質的問題,使復雜問題簡單化,抽象問題具體化,化難為易,獲得簡便易行的成功方案.
          例如:求1+2+3+4+…+n的值,其中n是正整數(shù).
          對于這個求和問題,如果采用純代數(shù)的方法(首尾兩頭加),問題雖然可以解決,但在求和過程中,需對n的奇偶性進行討論.
          如果采用數(shù)形結合的方法,即用圖形的性質來說明數(shù)量關系的事實,那就非常的直觀.現(xiàn)利用圖形的性質來求1+2+3+4+…+n的值,方案如下:如圖,斜線左邊的三角形圖案是由上到下每層依次分別為1,2,3,…,n個小圓圈排列組成的.而組成整個三角形小圓圈的個數(shù)恰為所求式子1+2+3+4+…+n的值.為求式子的值,現(xiàn)把左邊三角形倒放于斜線右邊,與原三角形組成一個平行四邊形.此時,組成平行四邊形的小圓圈共有n行,每行有(n+1)個小圓圈,所以組成平行四邊形小圓圈的總個數(shù)為n(n+1)個,因此,組成一個三角形小圓圈的個數(shù)為
          n(n+1)
          2
          ,即1+2+3+4+…+n=
          n(n+1)
          2

          (1)仿照上述數(shù)形結合的思想方法,設計相關圖形,求1+3+5+7+…+(2n-1)的值,其中n是正整數(shù).(要求:畫出圖形,并利用圖形做必要的推理說明)
          (2)試設計另外一種圖形,求1+3+5+7+…+(2n-1)的值,其中n是正整數(shù).(要求:畫出圖形,精英家教網并利用圖形做必要的推理說明)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          我國著名數(shù)學家華羅庚曾經說過這樣一句話:“數(shù)形結合百般好,隔裂分家萬事休”.
          如下圖,在一個邊長為1的正方形紙板上,依次貼上面積為
          1
          2
          ,
          1
          4
          ,
          1
          8
          1
          16
          ,…,
          1
          210
          的小長方形紙片,請你寫精英家教網出最后余下未貼部分的面積的表達式:
           

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          我國著名數(shù)學家華羅庚曾說過:“數(shù)形結合百般好,隔裂分家萬事非.”如圖,在一個邊長為1的正方形紙版上,依次貼上面積為
          1
          2
          ,
          1
          4
          ,
          1
          8
          1
          2n
          ,的矩形彩色紙片(n為大于1的整數(shù)).
          請你用“數(shù)形結合”的思想,依數(shù)形變化的規(guī)律,計算
          1
          2
          +
          1
          4
          +
          1
          8
          +…+
          1
          2n
          =
          1-
          1
          2n
          1-
          1
          2n

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          一位老人非常喜歡孩子,每當有孩子到他家做客時,老人都要拿出糖果招待他們.來一個孩子,老人就給孩子一塊糖;來兩個孩子,老人就給每個孩子兩塊糖…
          (1)第一天有a個男孩去了老人家,老人一共給了這些孩子a2塊糖;
          (2)第二天有b個女孩去了老人家,老人一共給了這些孩子b2塊糖;
          (3)第三天這(a+b)個孩子一起去了老人家,老人一共給了這些孩子(a+b)2塊糖.
          這些孩子第三天得到的糖果數(shù)與前兩天他們得到的糖果總數(shù)相比哪個多,哪個少?為什么?經過思考可知,a個男孩每人多得了b塊糖,b個女孩每人多得了a塊糖,因此多得了ab+ab=2ab塊糖,即有(a+b)2=a2+b2+2ab.
          我國著名數(shù)學家華羅庚曾說過:“數(shù)缺形時少直觀,形少數(shù)時難入微;數(shù)形結合百般好,隔離分家萬事休”.在一定條件下,數(shù)和形之間可以相互轉化,相互滲透.
          體會數(shù)形結合思想的內涵,試設計一種圖形來說明(a+b)2=a2+b2+2ab.(要求:畫出圖形,并利用圖形作必要的推理說明)

          查看答案和解析>>