日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知,在△ABC中,∠BAC90°,∠ABC45°,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)BC重合),以AD為邊做正方形ADEF,連接CF

          1)如圖,當(dāng)點(diǎn)D在線段BC上時(shí),直接寫出線段CF、BC、CD之間的數(shù)量關(guān)系   

          2)如圖,當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),其他件不變,則(1)中的三條線段之間的數(shù)量關(guān)系還成立嗎?如成立,請(qǐng)予以證明,如不成立,請(qǐng)說(shuō)明理由;

          3)如圖,當(dāng)點(diǎn)D在線段BC的反向延長(zhǎng)線上時(shí),且點(diǎn)A、F分別在直線BC兩側(cè),其他條件不變;若正方形ADEF的邊長(zhǎng)為4,對(duì)角線AE、DF相交于點(diǎn)O,連接OC,請(qǐng)直接寫出OC的長(zhǎng)度.

          【答案】1CF+CDBC;(2CF+CDBC不成立,存在CFCDBC,證明詳見解析;(3

          【解析】

          1ABC是等腰直角三角形,利用SAS即可證明BAD≌△CAF,從而證得CFBD,據(jù)此即可證得;

          2)同(1)相同,利用SAS即可證得BAD≌△CAF,從而證得BDCF,即可得到CFCDBC;

          3)先證明BAD≌△CAF,進(jìn)而得出FCD是直角三角形,然后根據(jù)正方形的性質(zhì)即可求得DF的長(zhǎng),再根據(jù)直角三角形斜邊上中線的性質(zhì)即可得到OC的長(zhǎng).

          1)∵∠BAC90°,∠ABC45°,

          ∴∠ACB=∠ABC45°,

          ABAC,

          ∵四邊形ADEF是正方形,

          ADAF,∠DAF90°,

          ∵∠BAD90°﹣∠DAC,∠CAF90°﹣∠DAC,

          ∴∠BAD=∠CAF,

          ∵在BADCAF中,

          ,

          ∴△BAD≌△CAFSAS),

          BDCF,

          BD+CDBC,

          CF+CDBC;

          故答案為:CF+CDBC;

          2CF+CDBC不成立,存在CFCDBC;

          理由:∵∠BAC90°,∠ABC45°,

          ∴∠ACB=∠ABC45°,

          ABAC,

          ∵四邊形ADEF是正方形,

          ADAF,∠DAF90°,

          ∵∠BAD90°﹣∠DAC,∠CAF90°﹣∠DAC,

          ∴∠BAD=∠CAF

          ∵在BADCAF中,

          ,

          ∴△BAD≌△CAFSAS

          BDCF

          BC+CDCF,

          CFCDBC;

          3)∵∠BAC90°,∠ABC45°,

          ∴∠ACB=∠ABC45°

          ABAC,

          ∵四邊形ADEF是正方形,

          ADAF,∠DAF90°

          ∵∠BAD90°﹣∠BAF,∠CAF90°﹣∠BAF,

          ∴∠BAD=∠CAF,

          ∵在BADCAF中,

          ,

          ∴△BAD≌△CAFSAS),

          ∴∠ACF=∠ABD,

          ∵∠ABC45°

          ∴∠ABD135°,

          ∴∠ACF=∠ABD135°,

          ∴∠FCD135°45°90°,

          ∴△FCD是直角三角形.

          ∵正方形ADEF的邊長(zhǎng)4且對(duì)角線AE、DF相交于點(diǎn)O

          DFAD4,ODF中點(diǎn).

          RtCDF中,OCDF×

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】橫臥于清波之上的黃石大橋與已經(jīng)貫通的五峰山隧道將成為恩施城區(qū)跨越東西方向的最大直線通道,它把六角亭老城區(qū)與知名景點(diǎn)女兒城連為一體,緩解了恩施城區(qū)交通擁堵的現(xiàn)狀.如圖,某數(shù)學(xué)興趣小組利用無(wú)人機(jī)在五峰山隧道正上空點(diǎn)P處測(cè)得黃石大橋西端點(diǎn)A的俯角為30°,東端點(diǎn)B(隧道西進(jìn)口)的俯角為45°,隧道東出口C的俯角為22°,已知黃石大橋AB全長(zhǎng)175米,隧道BC的長(zhǎng)約多少米(計(jì)算結(jié)果精確到1米)?(參考數(shù)據(jù):sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,1.4,1.7

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在銳角三角形ABC中,點(diǎn)D,E分別在邊AC,AB上,AGBC于點(diǎn)G,AFDE于點(diǎn)F,EAF=GAC.

          (1)求證:ADE∽△ABC;

          (2)若AD=3,AB=5,求的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,E為半圓O直徑AB上一動(dòng)點(diǎn),AB6,C為半圓上一定點(diǎn),連接ACBC,AD平分∠CABBC于點(diǎn)D,連接CEDE.小紅根據(jù)學(xué)習(xí)函數(shù)經(jīng)驗(yàn),分別對(duì)線段AE,CEDE的長(zhǎng)度之間的關(guān)系進(jìn)行了探究.下面是小紅的探究過(guò)程,請(qǐng)將它補(bǔ)充完整:

          1)對(duì)于點(diǎn)E在直徑AB上的不同位置,畫圖,測(cè)量,得到了線段AE,CE,DE的長(zhǎng)度的幾組值,如下表:

          位置1

          位置2

          位置3

          位置4

          位置5

          位置6

          位置7

          CE/cm

          2.50

          2.28

          2.50

          3.00

          3.72

          4.64

          5.44

          DE/cm

          2.98

          2.29

          1.69

          1.69

          2.18

          3.05

          3.84

          AE/cm

          0.00

          0.87

          2.11

          3.02

          4.00

          5.12

          6.00

          AECE,DE的長(zhǎng)度這三個(gè)量中,確定   長(zhǎng)度是自變量,自變量的取值范圍是   

          2)在同一平面直角坐標(biāo)系xOy中,畫出(1)中所確定函數(shù)的圖象;

          3)結(jié)合函數(shù)的圖象,解決問(wèn)題:當(dāng)ACE為等腰三角形時(shí),AE的長(zhǎng)度約為   cm(結(jié)果精確到0.01).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,四邊形ABCD是邊長(zhǎng)為4的正方形,若AF3EAB上一個(gè)動(dòng)點(diǎn),把△AEF沿著EF折疊,得到△PEF,若△BPE為直角三角形,則BP的長(zhǎng)度為_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】我縣果菜大王王大炮收貨番茄20噸,青椒12噸.現(xiàn)計(jì)劃租用甲、乙兩種貨車共8輛將這批果菜全部運(yùn)往外地銷售,已知一輛甲種貨車可裝番茄4噸和青椒1噸,一輛乙種貨車可裝番茄和青椒各2噸.

          1)王燦有幾種方案安排甲、乙兩種貨車可一次性地將果菜運(yùn)到銷售地?

          2)若甲種貨車每輛要付運(yùn)輸費(fèi)300元,乙種貨車每輛要付運(yùn)輸費(fèi)240元,則果農(nóng)王大炮應(yīng)選擇哪種方案,使運(yùn)輸費(fèi)最少?最少運(yùn)費(fèi)是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖為某景區(qū)五個(gè)景點(diǎn)A,B,C,D,E的平面示意圖,B,AC的正東方向,DC的正北方向,DEB的北偏西30°方向上,EA的西北方向上,C,D相距1000m,EBD的中點(diǎn)處.

          (1)求景點(diǎn)B,E之間的距離;

          (2)求景點(diǎn)B,A之間的距離.(結(jié)果保留根號(hào))

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某蔬菜加工公司先后兩批次收購(gòu)洋蔥共100噸.第一批洋蔥價(jià)格為4000元/噸;因洋蔥大量上市,第二批價(jià)格跌至1000元/噸.這兩批洋蔥共用去16萬(wàn)元.

          (1)求兩批次購(gòu)進(jìn)洋蔥各多少噸;

          (2)公司收購(gòu)后對(duì)洋蔥進(jìn)行加工,分為粗加工和精加工兩種:粗加工每噸利潤(rùn)400元,精加工每噸利潤(rùn)1000元.要求精加工數(shù)量不多于粗加工數(shù)量的三倍.為獲得最大利潤(rùn),精加工數(shù)量應(yīng)為多少噸?最大利潤(rùn)是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在中,,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)一定角度后得到,連接,過(guò)點(diǎn)于點(diǎn),若,且,則的長(zhǎng)為__________

          查看答案和解析>>

          同步練習(xí)冊(cè)答案