日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)已知:如圖,OA與oB外切于點(diǎn)C,DE是兩圓的一條外公切線,切點(diǎn)分別為D、E.
          (1)判斷△DCE的形狀并證明;
          (2)過點(diǎn)C作CO⊥DE,垂足為點(diǎn)O,以直線DE為x軸、直線DC為y軸建立直角坐標(biāo)系,且OE=2,OD=8,求經(jīng)過D、C、E三點(diǎn)的拋物線的函數(shù)解析式,并求出拋物線的頂點(diǎn)坐標(biāo);
          (3)這條拋物線的頂點(diǎn)是否在連心線AB上?如果在,請你證明;如果不在,說明理由.
          分析:(1)過C點(diǎn)作⊙A與⊙B的內(nèi)公切線交DE于F,可得出FC=FD,F(xiàn)C=FE,則△DCE是直角三角形;
          (2)可證明△DOC∽△COE,則OC2=OD•OF=16,可求出C點(diǎn)坐標(biāo)(0,4),設(shè)經(jīng)過D、C、E三點(diǎn)的拋物線的解析式為y=ax2+bx+c或者y=a(x-x1)(x-x2),把D(-8,0),E(2,0),C(0,4)代入即可解得解析式,從而求出頂點(diǎn)坐標(biāo);
          (3)連接AD、BE,過B點(diǎn)作BG⊥AD于G,設(shè)⊙A半徑為R,⊙B半徑為r,由AD∥CO∥BE,得AC:CB=DO:OE=4:1,在Rt△AGB中,根據(jù)勾股定理可求得r.即可得出A點(diǎn)坐標(biāo),B點(diǎn)坐標(biāo),設(shè)直線AB的解析式為y=kx+b(k≠0),把拋物線頂點(diǎn)坐標(biāo)代入直線的解析式,從而判斷出拋物線的頂點(diǎn)P在連心線AB上.
          解答:解:(1)△DCE是直角三角形,
          過C點(diǎn)作⊙A與⊙B的內(nèi)公切線交DE于F,則FC=FD,F(xiàn)C=FE,
          ∴FC是△CDE的中線,且FC=
          1
          2
          DE,
          ∴△DCE是直角三角形,∠DCE=90°;

          (2)在Rt△DCE中,CO⊥DE于O點(diǎn),△DOC∽△COE,
          ∴OC2=OD•OF=16,OC=4,C點(diǎn)坐標(biāo)(0,4),
          設(shè)經(jīng)過D、C、E三點(diǎn)的拋物線的解析式為y=ax2+bx+c或者y=a(x-x1)(x-x2),
          把.D(-8,0),E(2,0),C(0,4)代入解析式,
          解得:y=-
          1
          4
          x2-1.5x+4,
          ∴頂點(diǎn)坐標(biāo)是(-3,
          25
          4
          );

          (3)答:拋物線的頂點(diǎn)在連心線AB上.證明如下:
          連接AD、BE,過B點(diǎn)作BG⊥AD于G,設(shè)⊙A半徑為R,⊙B半徑為r,
          ∵AD∥CO∥BE,精英家教網(wǎng)
          ∴AC:CB=DO:OE=4:1
          在Rt△AGB中,AB2=AG2+BG2,
          ∴r=
          5
          2
          R=10,
          .∴A點(diǎn)坐標(biāo)(-8,10),B點(diǎn)坐標(biāo)(2,2.5),
          設(shè)直線AB的解析式為y=kx+b(k≠0),
          解得y=-
          3
          4
          x+4,
          把拋物線頂點(diǎn)坐標(biāo)(-3,
          25
          4
          )代入直線的解析式,
          左邊=右邊=
          25
          4
          ,
          ∴拋物線y=-
          1
          4
          x2-1.5x+4的頂點(diǎn)P(-3,
          25
          4
          )在連心線AB上.
          點(diǎn)評:本題是一道二次函數(shù)的綜合題,考查相切兩圓的性質(zhì)、函數(shù)以及相似三角形的判定和性質(zhì)等知識(shí),以及綜合運(yùn)用所學(xué)知識(shí)分析和解決問題的能力.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:如圖,AB與⊙O相切于點(diǎn)C,OA=OB,⊙O的直徑為4,AB=8.則sinA的值是
          5
          5
          5
          5

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          已知:如圖,OA與oB外切于點(diǎn)C,DE是兩圓的一條外公切線,切點(diǎn)分別為D、E.
          (1)判斷△DCE的形狀并證明;
          (2)過點(diǎn)C作CO⊥DE,垂足為點(diǎn)O,以直線DE為x軸、直線DC為y軸建立直角坐標(biāo)系,且OE=2,OD=8,求經(jīng)過D、C、E三點(diǎn)的拋物線的函數(shù)解析式,并求出拋物線的頂點(diǎn)坐標(biāo);
          (3)這條拋物線的頂點(diǎn)是否在連心線AB上?如果在,請你證明;如果不在,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2005年江蘇省連云港市灌云縣中考數(shù)學(xué)模擬試卷(三)(解析版) 題型:解答題

          已知:如圖,OA與oB外切于點(diǎn)C,DE是兩圓的一條外公切線,切點(diǎn)分別為D、E.
          (1)判斷△DCE的形狀并證明;
          (2)過點(diǎn)C作CO⊥DE,垂足為點(diǎn)O,以直線DE為x軸、直線DC為y軸建立直角坐標(biāo)系,且OE=2,OD=8,求經(jīng)過D、C、E三點(diǎn)的拋物線的函數(shù)解析式,并求出拋物線的頂點(diǎn)坐標(biāo);
          (3)這條拋物線的頂點(diǎn)是否在連心線AB上?如果在,請你證明;如果不在,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2004年云南省昆明市中考數(shù)學(xué)試卷(解析版) 題型:解答題

          已知:如圖,OA與oB外切于點(diǎn)C,DE是兩圓的一條外公切線,切點(diǎn)分別為D、E.
          (1)判斷△DCE的形狀并證明;
          (2)過點(diǎn)C作CO⊥DE,垂足為點(diǎn)O,以直線DE為x軸、直線DC為y軸建立直角坐標(biāo)系,且OE=2,OD=8,求經(jīng)過D、C、E三點(diǎn)的拋物線的函數(shù)解析式,并求出拋物線的頂點(diǎn)坐標(biāo);
          (3)這條拋物線的頂點(diǎn)是否在連心線AB上?如果在,請你證明;如果不在,說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案