日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】尤秀同學(xué)遇到了這樣一個(gè)問(wèn)題:如圖1所示,已知AF,BE是△ABC的中線,且AF⊥BE,垂足為P,設(shè)BC=a,AC=b,AB=c.
          求證:a2+b2=5c2
          該同學(xué)仔細(xì)分析后,得到如下解題思路:
          先連接EF,利用EF為△ABC的中位線得到△EPF∽△BPA,故 ,設(shè)PF=m,PE=n,用m,n把PA,PB分別表示出來(lái),再在Rt△APE,Rt△BPF中利用勾股定理計(jì)算,消去m,n即可得證

          (1)請(qǐng)你根據(jù)以上解題思路幫尤秀同學(xué)寫(xiě)出證明過(guò)程.
          (2)利用題中的結(jié)論,解答下列問(wèn)題:在邊長(zhǎng)為3的菱形ABCD中,O為對(duì)角線AC,BD的交點(diǎn),E,F(xiàn)分別為線段AO,DO的中點(diǎn),連接BE,CF并延長(zhǎng)交于點(diǎn)M,BM,CM分別交AD于點(diǎn)G,H,如圖2所示,求MG2+MH2的值.

          【答案】
          (1)

          解:設(shè)PF=m,PE=n,連結(jié)EF,如圖1,

          ∵AF,BE是△ABC的中線,

          ∴EF為△ABC的中位線,AE= b,BF= a,

          ∴EF∥AB,EF= c,

          ∴△EFP∽△BPA,

          ,即 = ,

          ∴PB=2n,PA=2m,

          在Rt△AEP中,∵PE2+PA2=AE2,

          ∴n2+4m2= b2①,

          在Rt△AEP中,∵PF2+PB2=BF2

          ∴m2+4n2= a2②,

          ①+②得5(n2+m2)= (a2+b2),

          在Rt△EFP中,∵PE2+PF2=EF2,

          ∴n2+m2=EF2= c2,

          ∴5 c2= (a2+b2),

          ∴a2+b2=5c2;


          (2)

          解:∵四邊形ABCD為菱形,

          ∴BD⊥AC,

          ∵E,F(xiàn)分別為線段AO,DO的中點(diǎn),

          由(1)的結(jié)論得MB2+MC2=5BC2=5×32=45,

          ∵AG∥BC,

          ∴△AEG∽△CEB,

          =

          ∴AG=1,

          同理可得DH=1,

          ∴GH=1,

          ∴GH∥BC,

          = ,

          ∴MB=3GM,MC=3MH,

          ∴9MG2+9MH2=45,

          ∴MG2+MH2=5.


          【解析】(1)設(shè)PF=m,PE=n,連結(jié)EF,如圖1,根據(jù)三角形中位線性質(zhì)得EF∥AB,EF= c,則可判斷△EFP∽△BPA,利用相似比得到PB=2n,PA=2m,接著根據(jù)勾股定理得到n2+4m2= b2 , m2+4n2= a2 , 則5(n2+m2)= (a2+b2),而n2+m2=EF2= c2 , 所以a2+b2=5c2;(2)利用(1)的結(jié)論得MB2+MC2=5BC2=5×32=45,再利用△AEG∽△CEB可計(jì)算出AG=1,同理可得DH=1,則GH=1,然后利用GH∥BC,根據(jù)平行線分線段長(zhǎng)比例定理得到MB=3GM,MC=3MH,然后等量代換后可得MG2+MH2=5.本題考查了相似三角形的判定:平行于三角形的一邊的直線與其他兩邊相交,所構(gòu)成的三角形與原三角形相似;有兩組角對(duì)應(yīng)相等的兩個(gè)三角形相似.也考查了三角形中位線性質(zhì)和菱形的性質(zhì).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】國(guó)家規(guī)定,中小學(xué)生每天在校體育活動(dòng)時(shí)間不低于1小時(shí),為了解這項(xiàng)政策的落實(shí)情況,有關(guān)部門(mén)就“你某天在校體育活動(dòng)時(shí)間是多少”的問(wèn)題,在某校隨機(jī)抽查了部分學(xué)生,再根據(jù)活動(dòng)時(shí)間t(小時(shí))進(jìn)行分組(A組:t<0.5,B組:0.5≤t≤1,C組:1≤t<1.5,D組:t≥1.5),繪制成如下兩幅不完整統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息回答問(wèn)題:

          (1)此次抽查的學(xué)生數(shù)為人;
          (2)補(bǔ)全條形統(tǒng)計(jì)圖;
          (3)從抽查的學(xué)生中隨機(jī)詢問(wèn)一名學(xué)生,該生當(dāng)天在校體育活動(dòng)時(shí)間低于1小時(shí)的概率是
          (4)若當(dāng)天在校學(xué)生數(shù)為1200人,請(qǐng)估計(jì)在當(dāng)天達(dá)到國(guó)家規(guī)定體育活動(dòng)時(shí)間的學(xué)生有人.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】濟(jì)南大明湖畔的“超然樓”被稱作“江北第一樓”,某校數(shù)學(xué)社團(tuán)的同學(xué)對(duì)超然樓的高度進(jìn)行了測(cè)量,如圖,他們?cè)贏處仰望塔頂,測(cè)得仰角為30°,再往樓的方向前進(jìn)60m至B處,測(cè)得仰角為60°,若學(xué)生的身高忽略不計(jì), ≈1.7,結(jié)果精確到1m,則該樓的高度CD為(

          A.47m
          B.51m
          C.53m
          D.54m

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,點(diǎn)C是線段AB的黃金分割點(diǎn)(AC>BC),下列結(jié)論錯(cuò)誤的是( )

          A.
          B.BC2=AB?BC
          C.
          D.≈0.618

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】△ABC中,∠A=90°,AB=AC , BC=63cm,現(xiàn)沿底邊依次從下往上裁剪寬度均為3cm的矩形紙條,如圖所示,已知剪得的紙條中有一張是正方形,則這張正方形紙條是從下往上數(shù)第張.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】邊長(zhǎng)為4cm的正方形ABCD繞它的頂點(diǎn)A旋轉(zhuǎn)180°,頂點(diǎn)B所經(jīng)過(guò)的路線長(zhǎng)為 cm.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A(4,0),點(diǎn)B(0,3),把△ABO繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),得△A′BO′,點(diǎn)A,O旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)為A′,O′,記旋轉(zhuǎn)角為α.

          (1)如圖①,若α=90°,求AA′的長(zhǎng);
          (2)如圖②,若α=120°,求點(diǎn)O′的坐標(biāo);
          (3)在(Ⅱ)的條件下,邊OA上 的一點(diǎn)P旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)為P′,當(dāng)O′P+BP′取得最小值時(shí),求點(diǎn)P′的坐標(biāo)(直接寫(xiě)出結(jié)果即可)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】“綠色出行,低碳健身”已成為廣大市民的共識(shí).某旅游景點(diǎn)新增了一個(gè)公共自行車(chē)停車(chē)場(chǎng),6:00至18:00市民可在此借用自行車(chē),也可將在各停車(chē)場(chǎng)借用的自行車(chē)還于此地.林華同學(xué)統(tǒng)計(jì)了周六該停車(chē)場(chǎng)各時(shí)段的借、還自行車(chē)數(shù),以及停車(chē)場(chǎng)整點(diǎn)時(shí)刻的自行車(chē)總數(shù)(稱為存量)情況,表格中x=1時(shí)的y值表示7:00時(shí)的存量,x=2時(shí)的y值表示8:00時(shí)的存量…依此類(lèi)推.他發(fā)現(xiàn)存量y(輛)與x(x為整數(shù))滿足如圖所示的一個(gè)二次函數(shù)關(guān)系.

          時(shí)段

          x

          還車(chē)數(shù)
          (輛)

          借車(chē)數(shù)
          (輛)

          存量y
          (輛)

          6:00﹣7:00

          1

          45

          5

          100

          7:00﹣8:00

          2

          43

          11

          n

          根據(jù)所給圖表信息,解決下列問(wèn)題:
          (1)m= , 解釋m的實(shí)際意義:;
          (2)求整點(diǎn)時(shí)刻的自行車(chē)存量y與x之間滿足的二次函數(shù)關(guān)系式;
          (3)已知9:00~10:O0這個(gè)時(shí)段的還車(chē)數(shù)比借車(chē)數(shù)的3倍少4,求此時(shí)段的借車(chē)數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在Rt△ABC中,∠C=90°,翻折∠C,使點(diǎn)C落在斜邊AB上某一點(diǎn)D處,折痕為EF(點(diǎn)E、F分別在邊AC、BC上).
          (1)若以C、E、F為頂點(diǎn)的三角形與以A、B、C為頂點(diǎn)的三角形相似. ①當(dāng)AC=BC=2時(shí),AD的長(zhǎng)為;
          ②當(dāng)AC=3,BC=4時(shí),AD的長(zhǎng)為;
          (2)當(dāng)點(diǎn)D是AB的中點(diǎn)時(shí),△CEF與△CBA相似嗎?請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案