日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知拋物線C1y=
          12
          x2
          ,把它平移后得拋物線C2,使C2經(jīng)過點A(0,8),且與拋物線C1交于點B(2,n).在x軸上有一點P,從原點O出發(fā)以每秒1個單位的速度沿x軸正半軸的方向移動,設點P移動的時間為t秒,過點P作x軸的垂線l,分別交拋物線C1、C2于E、D,當直線l經(jīng)過點B前停止運動,以DE為邊在直線l左側畫正方形DEFG.
          (1)判斷拋物線C2的頂點是否在x軸上,并說明理由;
          (2)當t為何值時,正方形DEFG在y軸右側的部分的面積S有最大值?最大值為多少?
          (3)設M為正方形DEFG的對稱中心.當t為何值時,△MOP為等腰三角形?
          分析:(1)把點B的坐標代入拋物線C1,進行計算求出n的值,從而得到點B的坐標,然后根據(jù)平移變換不改變二次函數(shù)圖象的形狀,設拋物線C2的解析式為y=
          1
          2
          x2+bx+c,然后利用待定系數(shù)法求解,再根據(jù)拋物線的頂點坐標進行判斷;
          (2)根據(jù)兩拋物線的解析式表示出點D、E的坐標,然后求出DE的長度,然后根據(jù)矩形的面積公式列式整理,再根據(jù)二次函數(shù)的最值問題求解即可;
          (3)根據(jù)正方形的性質結合拋物線的對稱性可以判斷,當正方形的中心在y軸右側時,△MOP為等腰三角形,然后根據(jù)線段垂直平分線上的點到線段兩端點的距離相等,可得點M到直線l的距離等于正方形邊長的一半,然后列式求解即可.
          解答:解:(1)拋物線C2的頂點在x軸上.理由如下:
          ∵點B(2,n)在拋物線C1上,
          1
          2
          ×22=n,
          解得n=2,
          ∴點B的坐標為(2,2),
          ∵拋物線C2是拋物線C1平移得到,
          ∴設拋物線C2的解析式為y=
          1
          2
          x2+bx+c,
          又∵C2經(jīng)過點A(0,8),
          c=8
          1
          2
          ×4+2b+c=2
          ,
          解得
          b=-4
          c=8
          ,
          ∴拋物線C2的解析式為y=
          1
          2
          x2-4x+8=
          1
          2
          (x-4)2
          ∴拋物線C2的頂點在x軸上;

          (2)時間為t時,點D、E的坐標分別為D(t,
          1
          2
          t2-4t+8),E(t,
          1
          2
          t2),
          ∴DE=
          1
          2
          t2-4t+8-
          1
          2
          t2=-4t+8,
          ∴S=OP•DE=t(-4t+8)=-4t2+8t=-4(t-1)2+4,
          ∵直線l經(jīng)過點B前停止運動,
          ∴0<t<2,
          ∴當t=1時,正方形DEFG在y軸右側的部分S有最大值,最大值為4;

          (3)如圖,可以判定當點M在y軸左側時,△MOP不能為等腰三角形,
          ∴當點M在y軸右側,且在OP的垂直平分線上時,△MOP為等腰三角形,
          此時∵點M是正方形的中心,
          1
          2
          DE=
          1
          2
          OP,
          1
          2
          (-4t+8)=
          1
          2
          t,
          解得t=
          8
          5
          ,
          8
          5
          <2,
          ∴符合題意,
          故當t=
          8
          5
          時,△MOP為等腰三角形.
          點評:本題是對二次函數(shù)的綜合考查,待定系數(shù)法求函數(shù)解析式,兩點間的距離公式,正方形的性質,等腰三角形的性質,以及二次函數(shù)的最值問題,綜合性較強,難度較大,需仔細分析并理解方可解決.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          如圖,已知拋物線C1:y=a(x+2)2-5的頂點為P,與x軸相交于A、B兩點(點A在點B的左邊),點B的橫坐標是1.
          (1)求P點坐標及a的值;
          (2)如圖(1),拋物線C2與拋物線C1關于x軸對稱,將拋物線C2向右平移,平移后的拋物線記為C3,C3的頂點為M,當點P、M關于點B成中心對稱時,求C3的解析式;
          (3)如圖(2),點Q是x軸正半軸上一點,將拋物線C1繞點Q旋轉180°后得到拋物線C4.拋物線C4的頂點為N,與x軸相交于E、F兩點(點E在點F的左邊),當以點P、N、F為頂點的三角形是直角三角形時,求點Q的坐標.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,已知拋物線C1:y=a(x-2)2-5的頂點為P,與x軸相交于A、B兩點(點A在點B的左邊),點A的橫坐標是-1.
          (1)求P點坐標及a的值;
          (2)如圖(1),拋物線C2與拋物線C1關于x軸對稱,將拋物線C2向左平移,平移后的拋物線記為C3,C3的頂點為M,當點P、M關于點A成中心對稱時,求C3的解析式y(tǒng)=a(x-h)2+k;
          (3)如圖(2),點Q是x軸負半軸上一動點,將拋物線C1繞點Q旋轉180°后得到拋物線C4.拋物線C4的頂點為N,與x軸相交于E、F兩點(點E在點F的左邊),當以點P、N、E為頂點的三角形是直角三角形時,求頂點N的坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,已知拋物線c1:y=-
          14
          x2+bx+c
          與x軸交于點A、B(點A在B的左側),與y軸交于點C,拋物線c2與拋物線c1關于y軸對稱,點A、B的對稱點分別是E、D,連接CD、CB,設AD=m.
          (1)拋物線c2可以看成拋物線c1向右平移
          m
          m
          個單位得到.
          (2)若m=2,求b的值.
          (3)將△CDB沿直線BC折疊,點D的對應點為G,且四邊形CDBG是平行四邊形,
          ①△CDB為
          等邊
          等邊
          三角形(按邊分);
          ②若點G恰好落在拋物線c2上,求m的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,已知拋物線C1:y=a(x+2)2-5的頂點為P,與x軸相交于A、B兩點(點A在點B精英家教網(wǎng)的左側),點B的橫坐標是1;
          (1)求a的值;
          (2)如圖,拋物線C2與拋物線C1關于x軸對稱,將拋物線C2向右平移,平移后的拋物線記為C3,拋物線C3的頂點為M,當點P、M關于點O成中心對稱時,求拋物線C3的解析式.

          查看答案和解析>>

          同步練習冊答案