日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在平面直角坐標(biāo)系中,為坐標(biāo)原點,菱形的對角線軸上,兩點分別在第一象限和第四象限.直線的解析式為

          (1)如圖1,求點的坐標(biāo);

          (2)如圖2,為射線上一動點(不與點和點重合),過點軸交直線于點.設(shè)線段的長度為,點的橫坐標(biāo)為,求的函數(shù)關(guān)系式,并直接寫出自變量的取值范圍;

          (3)如圖3,在(2)的條件下,當(dāng)點運動到線段的延長線上時,連接軸于點,連接,,延長于點,過軸于點,的角平分線軸于點,求點的坐標(biāo).

          【答案】1A4,2);(2d= ;(3S0).

          【解析】

          1)如圖1中,連接ACOBF,延長BAy軸于E.利用三角形的中位線定理解決問題即可.
          2)分兩種情形:①如圖2-1中,當(dāng)0m4時,作PMOBM,QNOBN.②如圖2-2中,當(dāng)m4時,作PMOBM,QNOBN.分別求解即可.
          3)如圖3中,連接ACOBK,在KB上取一點J,使得AK=JK,連接AJ,作ETOBT,延長PEy軸于R,連接FMESL.首先證明AJ平分∠BAM,設(shè)KM=a,利用角平分線的性質(zhì)定理構(gòu)建方程求出a,可得點M的坐標(biāo),即可解決問題.

          1)如圖1中,連接ACOBF,延長BAy軸于E

          ∵直線AB的解析式為y=-x+4
          E0,4),B80),
          OE=4OB=8,
          ∵四邊形OABC是菱形,
          ACOB,OF=FB=4,
          ∴∠AFB=EOB=90°
          AFOE,∵OF=FB,
          AE=AB
          AF=OE=2,
          A4,2).
          2)如圖2-1中,當(dāng)0m4時,作PMOBM,QNOBN

          PQOB,PMOB,QNOB
          PM=QN,∠OMP=BNQ=90°,四邊形PQNM是矩形,
          PQ=MN
          AO=AB
          ∴∠POM=QBN,
          ∴△PMO≌△QNBAAS),
          OM=BN=m,
          d=PQ=MN=8-2m
          如圖2-2中,當(dāng)m4時,作PMOBM,QNOBN

          同法可得PQ=MN,OM=BM=m,
          d=PQ=MN=2m-8
          綜上所述,d=
          3)如圖3中,連接ACOBK,在KB上取一點J,使得AK=JK,連接AJ,作ETOBT,延長PEy軸于R,連接FMESL

          AK=KJ,∠AKJ=90°
          ∴∠AJK=45°,
          ∵∠AJK=JA+ABJ=45°,BAM+AOB=BAM+ABO=45°,
          ∴∠BAJ=BAM
          AJ平分∠MAB,
          (角平分線的性質(zhì)定理,可以用面積法證明,見下面補充說明),
          設(shè)KM=a,則AM=,MJ=2-aJB=2,AB=2,
          ,
          整理得:a2-5a+4=0,
          解得a=14(舍棄),
          KM=1,OM=5,
          M5.0),
          C4,-2),
          ∴直線CM的解析式為y=2x-10,
          ∵直線OA的解析式為y=x
          ,解得
          P),
          ∵直線MA的解析式為y=-2x+10
          PEOB,
          E),
          EROR,ETOB,
          ∴∠ERF=ETM=ROT=90°
          ER=RT=,四邊形RETO是正方形,
          TM=5-=,
          ∵∠RET=MEF=90°,
          ∴∠FER=MET
          ∴△ERF≌△ETMASA),
          RF=TM=EF=EM,
          OF=-=,
          F0,),
          EF=EMES平分∠FEM,
          ESFM
          FL=LM,
          L),
          ∴直線ES的解析式為y=3x-,
          y=0,得到x=
          S,0).
          補充說明:如圖,AJ平分∠MAB,則

          理由:作JEABE,JFAMAM的延長線于F
          AJ平分∠MAB,
          EJ=JF,

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】小李購買了一套一居室,他準(zhǔn)備將房子的地面鋪上地磚,地面結(jié)構(gòu)如圖所示,根據(jù)圖中所給的數(shù)據(jù)單位:米,解答下列問題:

          用含mn的代數(shù)式表示地面的總面積S;

          已知客廳面積是衛(wèi)生間面積的8倍,且衛(wèi)生間、臥室、廚房面積的和比客廳還少3平方米,如果鋪1平方米地磚的平均費用為100元,那么小李鋪地磚的總費用為多少元?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】ABC中,AB12ACBC10,將ABC繞點A按順時針方向旋轉(zhuǎn),得到ADE,旋轉(zhuǎn)角為α(0°<α<180°),點B的對應(yīng)點為D,點C的對應(yīng)點為E,連接BD,BE

          1)如圖,當(dāng)α60°時,延長BEAD于點F

          ①求證:ABD是等邊三角形;

          ②求證:BFAD,AFDF

          ③請直接寫出BE的長.

          2)在旋轉(zhuǎn)過程中,過點DDG垂直于直線AB,垂足為G,連接CE,當(dāng)∠DAG=∠ACB,且線段DG與線段AE無公共點時,請直接寫出BECE的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知在直角坐標(biāo)平面內(nèi),拋物線y=x2+bx+c經(jīng)過點A(2,0)、B(0,6).

          (1)求拋物線的表達(dá)式;

          (2)拋物線向下平移幾個單位后經(jīng)過點(4,0)?請通過計算說明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】1)計算:()×(﹣36

          2)計算:100÷(﹣22﹣(﹣2)÷(﹣

          3)化簡:(﹣x2+3xy)﹣(﹣x2+4xyy2

          4)先化簡后求值:x2+(2xy3y2)﹣2x2+yx2y2),其中x=﹣,y=3

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知數(shù)軸上點A表示的數(shù)為8,B是數(shù)軸上位于點A左側(cè)一點,且AB=22,動點PA點出發(fā),以每秒5個單位長度的速度沿數(shù)軸向左勻速運動,設(shè)運動時間為tt0)秒.

          1)出數(shù)軸上點B表示的數(shù)  ;點P表示的數(shù)  (用含t的代數(shù)式表示)

          2)動點Q從點B出發(fā),以每秒3個單位長度的速度沿數(shù)軸向右勻速運動,若點PQ同時出發(fā),問多少秒時P、Q之間的距離恰好等于2

          3)動點Q從點B出發(fā),以每秒3個單位長度的速度沿數(shù)軸向左勻速運動,若點P、Q同時出發(fā),問點P運動多少秒時追上點Q?

          4)若MAP的中點,NBP的中點,在點P運動的過程中,線段MN的長度是否發(fā)生變化?若變化,請說明理由,若不變,請你畫出圖形,并求出線段MN的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,用一張高為30,寬為的長方形打印紙打印文檔,如果左右的頁邊距都為,上下頁邊距比左右頁邊距多.

          1)請用的代數(shù)式表示中間打印部分的面積.

          2)當(dāng)時,中間打印部分的面積是多少平方厘米?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】閱讀材料,請回答下列問題.

          材料一:我國古代數(shù)學(xué)家秦九韶在《數(shù)書九章》中記述了“三斜求積術(shù)”,即已知三角形的三邊長,求它的面積,用現(xiàn)代式子表示即為:①(其中為三角形的三邊長,為面積),而另一個文明古國古希臘也有求三角形面積的“海倫公式”;……②(其中

          材料二:對于平方差公式:公式逆用可得:,例:

          1)若已知三角形的三邊長分別為45,7,請分別運用公式①和公式②,計算該三角形的面積;

          2)你能否由公式①推導(dǎo)出公式②?請試試,寫出推導(dǎo)過程.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】拋物線上部分點坐標(biāo)如表所示,下列說法錯誤的是( )

          x

          3

          2

          1

          0

          1

          y

          6

          0

          4

          6

          6

          A. 拋物線與y軸的交點為(0,6) B. 拋物線的對稱軸是在y軸的右側(cè)

          C. 拋物線一定經(jīng)過點(3,0) D. 在對稱軸左側(cè),yx增大而減小.

          查看答案和解析>>

          同步練習(xí)冊答案