日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,點P是等邊三角形ABC內(nèi)部一個動點,∠APB=120°,⊙O是△APB的外接圓.AP,BP的延長線分別交BC,AC于D,E.
          (1)求證:CA,CB是⊙O的切線;
          (2)已知AB=6,G在BC上,BG=2,當(dāng)PG取得最小值時,求PG的長及∠BGP的度數(shù).

          【答案】
          (1)證明:連接OA,OB,在⊙O上取一點M,連接AM,BM,

          ∴四邊形APBM是圓內(nèi)接四邊形,

          ∴∠M=180°﹣∠APB=60°,

          ∵∠AOB=2∠M=120°,

          ∵OA=OB,

          ∴∠OAB=∠OBA=30°,

          ∴∠BAC=60°,

          ∴∠OBC=90°,

          ∴CB是⊙O的切線;

          同理CA是⊙O的切線


          (2)作ON⊥AB于N,連接OG,

          當(dāng)O,P,G在一條直線上時,PG最小,

          ∵AB=6,

          ∴BN=3,

          ∴OB=2 ,

          ∵∠OBG=90°,BG=2,tan∠OGB= ,

          ∴∠OGB=60°,OG=4,

          ∴PG=4﹣2 ,

          此時,∠BGP=60°.


          【解析】(1)連接OA,OB,在⊙O上取一點M,連接AM,BM,根據(jù)圓內(nèi)接四邊形的性質(zhì)得到∠M=180°﹣∠APB=60°,根據(jù)圓周角定理得到∠AOB=2∠M=120°,求得∠BAC=60°,于是得到結(jié)論;(2)作ON⊥AB于N,連接OG,當(dāng)O,P,G在一條直線上時,PG最小,解直角三角形即可得到結(jié)論.
          【考點精析】本題主要考查了等邊三角形的性質(zhì)和三角形的外接圓與外心的相關(guān)知識點,需要掌握等邊三角形的三個角都相等并且每個角都是60°;過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心才能正確解答此題.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】李老師給愛好學(xué)習(xí)的小兵和小鵬提出這樣一個問題:如圖1,在ABC中,AB=AC點P為邊BC上的任一點,過點P作PD⊥AB,PE⊥AC,垂足分別為D、E,過點C作CFAB,垂足為F.求證:PD+PE=CF.

          小兵的證明思路是:如圖2,連接AP,由ABP與ACP面積之和等于ABC的面積可以證得:PD+PE=CF.

          小鵬的證明思路是:如圖2,過點P作PGCF,垂足為G,先證△GPC≌△ECP,可得:PE=CG,而PD=GF,則PD+PE=CF.

          請運用上述中所證明的結(jié)論和證明思路完成下列兩題:

          (1)如圖3,將長方形ABCD沿EF折疊,使點D落在點B上,點C落在點C′處,點P為折痕EF上的任一點,過點P作PG⊥BE、PH⊥BC,垂足分別為G、H,若AD=16,CF=6,求PG+PH的值;

          (2)如圖4,P是邊長為6的等邊三角形ABC內(nèi)任一點,且PD⊥AB,PF⊥AC,PE⊥BC,求PD+PE+PF的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】直線ABy=-x-b分別與x,y軸交于A6,0)、B兩點,過點B的直線交x軸負(fù)半軸于C,且OBOC=31

          1)求點B的坐標(biāo);

          2)求直線BC的解析式;

          3)直線EFy=2x-kk≠0)交ABE,交BC于點F,交x軸于點D,是否存在這樣的直線EF,使得SEBD=SFBD?若存在,求出k的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在ABC中,A=36°,C=72°,ABC的平分線交ACD,則圖中共有等腰三角形( 。

          A0 B1 C2 D3

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,一次函數(shù)y1=x與二次函數(shù)y2=ax2+bx+c圖象相交于P、Q兩點,則函數(shù)y=ax2+(b﹣1)x+c的圖象可能是( 。

          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】解答題
          (1)如圖1,已知△ABC,以AB,AC為邊分別向△ABC外作等邊△ABD和等邊△ACE,連結(jié)BE,CD,請你完成圖形(尺規(guī)作圖,不寫作法,保留作圖痕跡),并證明:BE=CD;

          (2)如圖2,利用(1)中的方法解決如下問題:在四邊形ABCD中,AD=3,CD=2,∠ABC=∠ACB=∠ADC=45°,求BD的長.

          (3)如圖3,四邊形ABCD中,∠CAB=90°,∠ADC=∠ACB=α,tanα= ,CD=5,AD=12,求BD的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,∠AOB=90°,OM平分∠AOB,直角三角板的直角頂點P在射線OM上移動,兩直角邊分別與OA、CB相交于點C、D.

          (1)問PC與PD相等嗎?試說明理由.

          (2)若OP=2,求四邊形PCOD的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在⊙O中,直徑CD⊥弦AB,則下列結(jié)論中正確的是(
          A.AD=AB
          B.∠BOC=2∠D
          C.∠D+∠BOC=90°
          D.∠D=∠B

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,數(shù)學(xué)實習(xí)小組在高300米的山腰(即PH=300米)P處進(jìn)行測量,測得對面山坡上A處的俯角為30°,對面山腳B處的俯角60°,已知tan∠ABC= ,點P,H,B,C,A在同一個平面上,點H,B,C在同一條直線上,且PH⊥BC,則A,B兩點間的距離為米.

          查看答案和解析>>

          同步練習(xí)冊答案