日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】李大爺一年前買(mǎi)入了A、B兩種兔子共46只.目前,他所養(yǎng)的這兩種兔子數(shù)量相同,且A種兔子的數(shù)量比買(mǎi)入時(shí)減少了3只,B種兔子的數(shù)量比買(mǎi)入時(shí)減少a只.

          (1)則一年前李大爺買(mǎi)入A種兔子________只,目前A、B兩種兔子共________只(用含a的代數(shù)式表示);

          (2)若一年前買(mǎi)入的A種兔子數(shù)量多于B種兔子數(shù)量,則目前A、B兩種兔子共有多少只?

          (3)李大爺目前準(zhǔn)備賣(mài)出30只兔子,已知賣(mài)A種兔子可獲利15/只,賣(mài)B種兔子可獲利6/只.如果賣(mài)出的A種兔子少于15只,且總共獲利不低于280元,那么他有哪幾種賣(mài)兔方案?哪種方案獲利最大?請(qǐng)求出最大獲利.

          【答案】(1) ,43-a;(2) 當(dāng)a=1時(shí),A、B兩種兔子有42;(3) 方案一:賣(mài)出的A種兔子12只,B種兔子18只,可獲利12×15+18×6=288(元),方案二:賣(mài)出的A種兔子13只,B種兔子17只,可獲利13×15+17×6=297(元),方案三:賣(mài)出的A種兔子14只,B種兔子16只,可獲利14×15+16×6=306(元),方案三獲利最大,最大利潤(rùn)為306

          【解析】

          (1)利用目前他所養(yǎng)的這兩種兔子數(shù)量相同,得出等式求解即可;(2)利用一年前買(mǎi)入的兔子數(shù)量多于B種兔子數(shù)量,得出不等式求解即可;(3)利用總共獲利不低于280元,賣(mài)A種兔子可獲利15/只,賣(mài)B種兔子可獲利6/,得出不等關(guān)系,進(jìn)而利用A種兔子的數(shù)量取值范圍得出即可.

          (1) ;43﹣a

          (2)解:由題意得出: , 解得:a<3,

          由題意得:a, , 應(yīng)為正整數(shù),

          當(dāng)a=1時(shí),符合題意,即目前A、B兩種兔子有42只;

          當(dāng)a=2時(shí), , 為分?jǐn)?shù),不合題意;

          ∴當(dāng)a=1時(shí),A、B兩種兔子有42

          (3)解:設(shè)李大爺賣(mài)出A種兔子y只,則賣(mài)出B種兔子(30﹣y)只,由題意得出: 15y+(30﹣y)×6≥280,

          解得:y≥

          又∵賣(mài)出的A種兔子少于15只,即 ≤y<15,

          y是整數(shù),

          y=12,13,14,即李大爺有三種賣(mài)兔方案:

          方案一:賣(mài)出的A種兔子12只,B種兔子18只,可獲利12×15+18×6=288(元),

          方案二:賣(mài)出的A種兔子13只,B種兔子17只,可獲利13×15+17×6=297(元),

          方案三:賣(mài)出的A種兔子14只,B種兔子16只,可獲利14×15+16×6=306(元),

          顯然,方案三獲利最大,最大利潤(rùn)為306.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,拋物線(xiàn)y=x2+x﹣2與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C.

          (1)求點(diǎn)A,點(diǎn)B和點(diǎn)C的坐標(biāo);
          (2)在拋物線(xiàn)的對(duì)稱(chēng)軸上有一動(dòng)點(diǎn)P,求PB+PC的值最小時(shí)的點(diǎn)P的坐標(biāo);
          (3)若點(diǎn)M是直線(xiàn)AC下方拋物線(xiàn)上一動(dòng)點(diǎn),求四邊形ABCM面積的最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在矩形ABCD中,AB=3,AD=4,將矩形ABCD繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°得到矩形A′B′C′D′,則點(diǎn)B經(jīng)過(guò)的路徑與BA,AC′,C′B′所圍成封閉圖形的面積是多少?(結(jié)果保留π).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,拋物線(xiàn)y=mx2﹣8mx+16m﹣1(m>0)與x軸的交點(diǎn)分別為A(x1 , 0),B(x2 , 0).
          (1)求證:拋物線(xiàn)總與x軸有兩個(gè)不同的交點(diǎn);
          (2)若AB=2,求此拋物線(xiàn)的解析式.
          (3)已知x軸上兩點(diǎn)C(2,0),D(5,0),若拋物線(xiàn)y=mx2﹣8mx+16m﹣1(m>0)與線(xiàn)段CD有交點(diǎn),請(qǐng)寫(xiě)出m的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】拋物線(xiàn)y=﹣x2+(m﹣1)x+m與y軸交點(diǎn)坐標(biāo)是(0,3).
          (1)求出m的值并畫(huà)出這條拋物線(xiàn);

          (2)求拋物線(xiàn)與x軸的交點(diǎn)和拋物線(xiàn)頂點(diǎn)的坐標(biāo);
          (3)當(dāng)x取什么值時(shí),y的值隨x值的增大而減。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,直角坐標(biāo)系中,ABC的頂點(diǎn)都在網(wǎng)格點(diǎn)上,其中,C點(diǎn)坐標(biāo)為(1,2)

          (1)寫(xiě)出點(diǎn)A、B的坐標(biāo):A(   ,  )、B(   ,   

          (2)將ABC先向左平移1個(gè)單位長(zhǎng)度,再向上平移2個(gè)單位長(zhǎng)度,得到A′B′C′,畫(huà)出A′B′C′

          (3)寫(xiě)出三個(gè)頂點(diǎn)坐標(biāo)A′(      )、B′(    、   )、C′ (    、   

          (4)求ABC的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知A(2,3),B(1,1),C(4,1),M(6,3).

          (1)將△ABC平原得到△A1B1C1 , 其中點(diǎn)A,B,C的對(duì)應(yīng)點(diǎn)分別是A1 , B1 , C1 , 且點(diǎn)A1的坐標(biāo)是(3,6),在圖中畫(huà)出△A1B1C1
          (2)將(1)中的△A1B1C1繞點(diǎn)M順時(shí)針旋轉(zhuǎn)90°,畫(huà)出旋轉(zhuǎn)后的△A2B2C2(其中點(diǎn)A2 , B2 , C2的對(duì)應(yīng)點(diǎn)分別是A1 , B1 , C1),并寫(xiě)出點(diǎn)A2 , B2 , C2的坐標(biāo).
          (3)(2)中的△A2B2C2能通過(guò)旋轉(zhuǎn)△ABC得到嗎?若能,請(qǐng)寫(xiě)出旋轉(zhuǎn)的方案.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知關(guān)于x的一元二次方程x2﹣(2k+1)x+k2+k=0.
          (1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;
          (2)若△ABC的兩邊AB,AC的長(zhǎng)是這個(gè)方程的兩個(gè)實(shí)數(shù)根.第三邊BC的長(zhǎng)為5,當(dāng)△ABC是等腰三角形時(shí),求k的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】解方程:x2﹣4x+3=0.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案