日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 我們?nèi)菀装l(fā)現(xiàn):反比例函數(shù)的圖象是一個(gè)中心對(duì)稱圖形.你可以利用這一結(jié)論解決問(wèn)題.如圖,在同一直角坐標(biāo)系中,正比例函數(shù)的圖象可以看作是:將x軸所在的直線繞著原點(diǎn)O逆時(shí)針旋轉(zhuǎn)α度角后的圖形.若它與反比例函數(shù)y=
          1x
          的圖象分別交于第一、三象限的點(diǎn)B、D,已知點(diǎn)A(-m,0)、C(m,0).
          (1)直接判斷并填寫:不論α取何值,四邊形ABCD的形狀一定是
          平行四邊形
          平行四邊形
          ;
          (2)當(dāng)點(diǎn)B為(p,1)時(shí),四邊形ABCD是矩形,直接寫出p、α、和m的值;
          (3)試探究:四邊形ABCD能不能是菱形?若能,直接寫出B點(diǎn)的坐標(biāo),若不能,說(shuō)明理由.
          分析:(1)由于反比例函數(shù)的圖象是一個(gè)中心對(duì)稱圖形,點(diǎn)B、D是正比例函數(shù)與反比例函數(shù)圖象的交點(diǎn),所以點(diǎn)B與點(diǎn)D關(guān)于點(diǎn)O成中心對(duì)稱,則OB=OD,又OA=OC,根據(jù)對(duì)角線互相平分的四邊形是平行四邊形,可得出四邊形ABCD的形狀;
          (2)把點(diǎn)B(p,1)代入y=
          1
          x
          ,即可求出p的值;過(guò)B作BE⊥x軸于E,在Rt△BOE中,根據(jù)正切函數(shù)的定義求出tanα的值,得出α的度數(shù);要求m的值,首先解Rt△BOE,得出OB的長(zhǎng)度,然后根據(jù)進(jìn)行的對(duì)角線相等得出OA=OB=OC=OD,從而求出m的值
          (3)假設(shè)四邊形ABCD為菱形,根據(jù)菱形的對(duì)角線垂直且互相平分,可知AC⊥BD,且AC與BD互相平分,又AC在x軸上,所以BD應(yīng)在y軸上,這與“點(diǎn)B、D分別在第一、三象限”矛盾,所以四邊形ABCD不可能為菱形.
          解答:解:(1)∵反比例函數(shù)的圖象是一個(gè)中心對(duì)稱圖形,點(diǎn)B、D是正比例函數(shù)與反比例函數(shù)圖象的交點(diǎn),
          所以點(diǎn)B與點(diǎn)D關(guān)于點(diǎn)O成中心對(duì)稱,則OB=OD,又OA=OC,根據(jù)對(duì)角線互相平分的四邊形是平行四邊形,
          ∴四邊形ABCD是平行四邊形;

          (2)∵點(diǎn)B(p,1)在y=
          1
          x
          的圖象的圖象上,
          ∴p=1,
          過(guò)B作BE⊥x軸于E,則
          在Rt△BOE中,
          α=45°,
          ∴OB=
          2

          又∵點(diǎn)B、D是正比例函數(shù)與反比例函數(shù)圖象的交點(diǎn),
          ∴點(diǎn)B、D關(guān)于原點(diǎn)O成中心對(duì)稱,
          ∴OB=OD=
          2

          ∵四邊形ABCD為矩形,且A(-m,0),C(m,0)
          ∴OA=OB=OC=OD=
          2
          ,
          ∴m=
          2


          (3)四邊形ABCD不能是菱形.理由如下:
          若四邊形ABCD為菱形,則對(duì)角線AC⊥BD,且AC與BD互相平分,
          因?yàn)辄c(diǎn)A、C的坐標(biāo)分別為(-m,0)、(m,0),
          所以點(diǎn)A、C關(guān)于原點(diǎn)O對(duì)稱,且AC在x軸上,
          所以BD應(yīng)在y軸上,
          這與“點(diǎn)B、D分別在第一、三象限”矛盾,
          所以四邊形ABCD不可能為菱形.
          故答案為:平行四邊形.
          點(diǎn)評(píng):本題主要考查了平行四邊形的判定,矩形、菱形的性質(zhì)及三角函數(shù)的定義等知識(shí),綜合性較強(qiáng),難度適中.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)我們?nèi)菀装l(fā)現(xiàn):反比例函數(shù)的圖象是一個(gè)中心對(duì)稱圖形.你可以利用這一結(jié)論解決問(wèn)題.如圖,在同一直角坐標(biāo)系中,正比例函數(shù)的圖象可以看作是:將x軸所在的直線繞著原點(diǎn)O逆時(shí)針旋轉(zhuǎn)α度角后的圖形.若它與反比例函數(shù)y=
          3
          x
          的圖象分別交于第一、三象限的點(diǎn)B,D,已知點(diǎn)A(-m,O)、C(m,0).
          (1)直接判斷并填寫:不論α取何值,四邊形ABCD的形狀一定是
           
          ;
          (2)①當(dāng)點(diǎn)B為(p,1)時(shí),四邊形ABCD是矩形,試求p,α,和m的值;
          ②觀察猜想:對(duì)①中的m值,能使四邊形ABCD為矩形的點(diǎn)B共有幾個(gè)?(不必說(shuō)理)
          (3)試探究:四邊形ABCD能不能是菱形?若能,直接寫出B點(diǎn)的坐標(biāo),若不能,說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2013屆江西省吉安朝宗實(shí)驗(yàn)學(xué)校九年級(jí)第一次段考數(shù)學(xué)試卷(帶解析) 題型:解答題

          我們?nèi)菀装l(fā)現(xiàn):反比例函數(shù)的圖象是一個(gè)中心對(duì)稱圖形,你可以利用這一結(jié)論解決問(wèn)題。如圖,在同一直角坐標(biāo)系中,正比例函數(shù)的圖象可以看作是將x軸所在的直線繞著原點(diǎn)O逆時(shí)針旋轉(zhuǎn)度后的圖形。它與反比例函數(shù)的圖象分別交于第一、三象限的點(diǎn)B、D,已知點(diǎn)A(-m,0)、C(m,0)。

          (1)判斷并填寫,不論取何值,四邊形ABCD的形狀一定是______;
          (2)①當(dāng)點(diǎn)B坐標(biāo)為(p,1)時(shí),四邊形ABCD是矩形,試求p、和m的值;
          ②觀察猜想:對(duì)①中的m值,能使四邊形ABCD為矩形的點(diǎn)B共有幾個(gè)?(不必說(shuō)理)
          (3)試探究:四邊形ABCD能不能是菱形?若能,直接寫出B點(diǎn)的坐標(biāo);若不能,說(shuō)明理由。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江西省九年級(jí)第一次段考數(shù)學(xué)試卷(解析版) 題型:解答題

          我們?nèi)菀装l(fā)現(xiàn):反比例函數(shù)的圖象是一個(gè)中心對(duì)稱圖形,你可以利用這一結(jié)論解決問(wèn)題。如圖,在同一直角坐標(biāo)系中,正比例函數(shù)的圖象可以看作是將x軸所在的直線繞著原點(diǎn)O逆時(shí)針旋轉(zhuǎn)度后的圖形。它與反比例函數(shù)的圖象分別交于第一、三象限的點(diǎn)B、D,已知點(diǎn)A(-m,0)、C(m,0)。

          (1)判斷并填寫,不論取何值,四邊形ABCD的形狀一定是______;

          (2)①當(dāng)點(diǎn)B坐標(biāo)為(p,1)時(shí),四邊形ABCD是矩形,試求p、和m的值;

          ②觀察猜想:對(duì)①中的m值,能使四邊形ABCD為矩形的點(diǎn)B共有幾個(gè)?(不必說(shuō)理)

          (3)試探究:四邊形ABCD能不能是菱形?若能,直接寫出B點(diǎn)的坐標(biāo);若不能,說(shuō)明理由。

           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:福建省中考真題 題型:解答題

          我們?nèi)菀装l(fā)現(xiàn):反比例函數(shù)的圖象是一個(gè)中心對(duì)稱圖形,你可以利用這一結(jié)論解決問(wèn)題。
          如圖,在同一直角坐標(biāo)系中,正比例函數(shù)的圖象可以看作是:將x軸所在的直線繞著原點(diǎn)O逆時(shí)針旋轉(zhuǎn)α度角后的圖形,若它與反比例函數(shù)的圖象分別交于第一、三象限的點(diǎn)B,D,已知點(diǎn)A(-m,0)、C(m,0)。
          (1)直接判斷并填寫:不論α取何值,四邊形ABCD的形狀一定是_______;
          (2)①當(dāng)點(diǎn)B為(p,1)時(shí),四邊形ABCD是矩形,試求p,α,和m的值;
          ②觀察猜想:對(duì)①中的m值,能使四邊形ABCD為矩形的點(diǎn)B共有幾個(gè)?(不必說(shuō)理)
          (3)試探究:四邊形ABCD能不能是菱形?若能,直接寫出B點(diǎn)的坐標(biāo),若不能,說(shuō)明理由。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案