日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本題滿分8分)如圖,PA為⊙O的切線,A為切點.過A作OP的垂線AB,垂足為點C,交⊙O于點B.延長BO與⊙O交于點D,與PA的延長線交于點E.
          (1)求證:PB為⊙O的切線;
          (2)若tan∠ABE=,求sinE的值.


          (1)證明:連接OA
          ∵PA為⊙O的切線,
          ∴∠PAO=90°
          ∵OA=OB,OP⊥AB于C
          ∴BC=CA,PB=PA
          ∴△PBO≌△PAO
          ∴∠PBO=∠PAO=90°
          ∴PB為⊙O的切線
          (2)解法1:連接AD,∵BD是直徑,∠BAD=90°
          由(1)知∠BCO=90°
          ∴AD∥OP
          ∴△ADE∽△POE
          ∴EA/EP=AD/OP 由AD∥OC得AD=2OC  ∵tan∠ABE="1/2  " ∴OC/BC=1/2,設(shè)OC=t,則BC=2t,AD=2t由△PBC∽△BOC,得PC=2BC=4t,OP=5t
          ∴EA/EP=AD/OP=2/5,可設(shè)EA=2m,EP=5m,則PA=3m
          ∵PA=PB∴PB=3m
          ∴sinE=PB/EP=3/5
          (2)解法2:連接AD,則∠BAD=90°由(1)知∠BCO=90°∵由AD∥OC,∴AD=2OC  ∵tan∠ABE=1/2,∴OC/BC=1/2,設(shè)OC=t,BC=2t,AB=4t由△PBC∽△BOC,得PC=2BC=4t,
          ∴PA=PB=2t 過A作AF⊥PB于F,則AF·PB=AB·PC
          ∴AF=t  進而由勾股定理得PF=t
          ∴sinE=sin∠FAP=PF/PA=3/5
          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源:不詳 題型:解答題

          (本小題10分)在等腰梯形ABCD中,AD∥BC,且AD=2,以CD為直徑作⊙
          O1,交BC于點E,過點E作EF⊥AB于F,建立如圖12所示的平面直角坐標系,已知A,
          B兩點的坐標分別為A(0,2),B(-2,0).
          (1)求C,D兩點的坐標.
          (2)求證:EF為⊙O1的切線.
          (3)探究:如圖13,線段CD上是否存在點P,使得線段PC的長度與P點到y(tǒng)軸的距離相等?如果存在,請找出P點的坐標;如果不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:解答題

          (本題滿分8分)如圖,AB是⊙O的直徑,過B點作⊙O的切線,交弦AE的延
          長線于點C,作,垂足為D,若,,求DE的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:填空題

          (2011?常州)如圖,DE是⊙O的直徑,弦AB⊥CD,垂足為C,若AB=6,CE=1,則OC=  ,CD=  

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:填空題

          如圖,∠A是⊙O的圓周角,∠A=60°,則∠OBC的度數(shù)為    度.

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:解答題

          (8分)如圖9,在⊙O中,點C為劣弧AB的中點,連接AC并延長至D,使CA=CD,連接DB并延長交⊙O于點E,連接AE.
          (1)求證:AE是⊙O的直徑;
          (2)如圖10,連接CE,⊙O的半徑為5,AC長為4,求陰影部分面積之和.(保留∏與根號)

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:單選題

          (2011•南京)如圖,在平面直角坐標系中,⊙P的圓心是(2,a)(a>2),半徑為2,函數(shù)y=x的圖象被⊙P截得的弦AB的長為,則a的值是( 。
                  

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:解答題

          如圖,AB是⊙O的直徑,BC是弦,∠ABC的平分線BD交⊙O于點D,DE⊥BC,交BC的延長線于點E,BD交AC于點F.⑴求證:DE是⊙O的切線;(2) 若CE=1,ED=2,求⊙O的半徑.

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:解答題

          已知:如圖,BD為⊙O的直徑,ABACADBCE,AE=2,ED=4.

          (1)求證:△ABE∽△ADB;
          (2)求AB的長;
          (3)延長DBF,使BFOB,連接FA,試判斷直線FA與⊙O的位置關(guān)系,并說明理由.

          查看答案和解析>>

          同步練習冊答案