日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】(列二元一次方程組解應(yīng)用題)某公司共有3個一樣規(guī)模的大餐廳和2個一樣規(guī)模的小餐廳,經(jīng)過測試同時開放2個大餐廳和1個小餐廳,可供300名員工就餐;同時開放1個大餐廳,1個小餐廳,可供170名員工就餐.

          (1)請問1個大餐廳、1個小餐廳分別可供多少名員工就餐;

          (2)如果3個大餐廳和2個小餐廳全部開放,那么能否供全體450名員工就餐?請說明理由.

          【答案】11個大餐廳可供130名員工就餐,1個小餐廳可供40名員工就餐(2)滿足全體450名員工的就餐要求,理由見解析.

          【解析】

          1)設(shè)1個大餐廳可供x名員工就餐,1個小餐廳可供y名員工就餐,根據(jù)“同時開放2個大餐廳和1個小餐廳,可供300名員工就餐;同時開放1個大餐廳,1個小餐廳,可供170名員工就餐”,即可得出關(guān)于x,y的二元一次方程組,解之即可得出結(jié)論;

          2)利用可供就餐的人數(shù)=每個餐廳可供就餐的人數(shù)×餐廳數(shù),求出3個大餐廳和2個小餐廳全部開放可供就餐人數(shù),將其與450比較后即可得出結(jié)論.

          1)設(shè)1個大餐廳可供x名員工就餐,1個小餐廳可供y名員工就餐,

          依題意,得:,

          解得:

          答:1個大餐廳可供130名員工就餐,1個小餐廳可供40名員工就餐.

          2)∵3×1302×40470(名),470450,

          ∴如果3個大餐廳和2個小餐廳全部開放,那么能滿足全體450名員工的就餐要求.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,正方形ABCD中,點(diǎn)E,F(xiàn)分別在邊CD,BC上,且∠EAF=45°,BD分別交AE,AF于點(diǎn)M,N,以點(diǎn)A為圓心,AB長為半徑畫弧BD.下列結(jié)論:①DE+BF=EF;②BN2+DM2=MN2;③△AMN∽△AFE;④ 與EF相切;⑤EF∥MN.其中正確結(jié)論的個數(shù)是( )

          A.5個
          B.4個
          C.3個
          D.2個

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,菱形AB1C1D1的邊長為1,∠B1=60°;作AD2⊥B1C1于點(diǎn)D2 , 以AD2為一邊,做第二個菱形AB2C2D2 , 使∠B2=60°;作AD3⊥B2C2于點(diǎn)D3 , 以AD3為一邊做第三個菱形AB3C3D3 , 使∠B3=60°…依此類推,這樣做的第n個菱形ABnCnDn的邊ADn的長是

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】請你補(bǔ)全證明過程:如圖,DGBC,ACBC,EFAB,∠1=2,求證:EFCD

          證明:∵DGBCACBC(已知)

          ∴∠DGB=90°,∠ACB=90°①(

          ∴∠DGB=ACB ( )

          DGAC ( )

          ∴∠2= ________ ⑤(

          又∠1=2 ⑥(

          ∴∠1=DCA ⑦(

          EFCD ⑧(

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,用長為 的鋁合金條制成“日”字形窗框,若窗框的寬為 ,窗戶的透光面積為 (鋁合金條的寬度不計).

          (Ⅰ)求出 的函數(shù)關(guān)系式;
          (Ⅱ)如何安排窗框的長和寬,才能使得窗戶的透光面積最大?并求出此時的最大面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在正△ABC中,D,E分別在AC,AB上,且 ,AE=BE,則有( )

          A.△AED∽△ABC
          B.△ADB∽△BED
          C.△BCD∽△ABC
          D.△AED∽△CBD

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】計算: .

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】閱讀材料,解決下列問題:

          材料一:對非負(fù)實(shí)數(shù)x“四舍五入到個位的值記為,即:當(dāng)n為非負(fù)整數(shù)時,如果,則;反之,當(dāng)n為非負(fù)整數(shù)時,如果;則,例如:,,

          材料二:平面直角坐標(biāo)系中任意兩點(diǎn),,我們把叫做、兩點(diǎn)間的折線距離,并規(guī)定是一定點(diǎn),是直線上的一動點(diǎn),我們把的最小值叫做到直線的折線距離,例如:若,

          如果,寫出實(shí)數(shù)x的取值范圍;已知點(diǎn),點(diǎn),且,求a的值.

          m為滿足的最大值,求點(diǎn)到直線的折線距離.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四邊形ABCD中,∠A=∠BCD=90°,BC=DC,延長AD到E,使DE=AB.

          (1)求證:∠ABC=∠EDC;

          (2)求證:△ABC≌△EDC.

          查看答案和解析>>

          同步練習(xí)冊答案