日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知ED為⊙O的直徑且ED=4,點A(不與E、D重合)為⊙O上一個動點,線段AB經(jīng)過點E,且EA=EB,F(xiàn)為⊙O上一點,∠FEB=90°,BF的延長線交AD的延長線交于點C.
          (1)求證:△EFB≌△ADE;
          (2)當點A在⊙O上移動時,直接回答四邊形FCDE的最大面積為多少.

          【答案】
          (1)解:連接FA,

          ∵∠FEB=90°,

          ∴EF⊥AB,

          ∵BE=AE,

          ∴BF=AF,

          ∵∠FEA=∠FEB=90°,

          ∴AF是⊙O的直徑,

          ∴AF=DE,

          ∴BF=ED,

          在Rt△EFB與Rt△ADE中, ,

          ∴Rt△EFB≌Rt△ADE;


          (2)∵Rt△EFB≌Rt△ADE,

          ∴∠B=∠AED,

          ∴DE∥BC,

          ∵ED為⊙O的直徑,

          ∴AC⊥AB,

          ∵EF⊥AB,

          ∴EF∥CD,

          ∴四邊形形FCDE,

          ∴E到BC的距離最大時,四邊形FCDE的面積最大,

          即點A到DE的距離最大,

          ∴當A為 的中點時,

          點A到DE的距離最大是2,

          ∴四邊形FCDE的最大面積=4×2=8.


          【解析】(1)連接FA,根據(jù)垂直的定義得到EF⊥AB,得到BF=AF,推出BF=ED,根據(jù)全等三角形的判定定理即可得到結(jié)論;(2)根據(jù)全等三角形的性質(zhì)得到∠B=∠AED,得到DE∥BC,推出四邊形形FCDE,得到E到BC的距離最大時,四邊形FCDE的面積最大,即點A到DE的距離最大,推出當A為 的中點時,于是得到結(jié)論.
          【考點精析】本題主要考查了二次函數(shù)的最值和圓周角定理的相關知識點,需要掌握如果自變量的取值范圍是全體實數(shù),那么函數(shù)在頂點處取得最大值(或最小值),即當x=-b/2a時,y最值=(4ac-b2)/4a;頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半才能正確解答此題.

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】某公司開發(fā)出一款新的節(jié)能產(chǎn)品,該產(chǎn)品的成本價為6元/件,該產(chǎn)品在正式投放市場前通過代銷點進行了為期一個月(30天)的試營銷,售價為8元/件,工作人員對銷售情況進行了跟蹤記錄,并將記錄情況繪成圖象,圖中的折線ODE表示日銷售量y(件)與銷售時間x(天)之間的函數(shù)關系,已知線段DE表示的函數(shù)關系中,時間每增加1天,日銷售量減少5件.
          (1)第24天的日銷售量是件,日銷售利潤是元.
          (2)求y與x之間的函數(shù)關系式,并寫出x的取值范圍;
          (3)日銷售利潤不低于640元的天數(shù)共有多少天?試銷售期間,日銷售最大利潤是多少元?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】若關于x的不等式 的整數(shù)解共有4個,則m的取值范圍是

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在平行四邊形ABCD中,點A、B、C的坐標分別是(1,0)、(3,1)、(3,3),雙曲線y= (k≠0,x>0)過點D.
          (1)求雙曲線的解析式;
          (2)作直線AC交y軸于點E,連結(jié)DE,求△CDE的面積.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在△ABC中,BC=4,以點A為圓心,2為半徑的⊙A與BC相切于點D,交AB于點E,交AC于點F,點P是⊙A上的一點,且∠EPF=45°,則圖中陰影部分的面積為

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】綜合題。
          (1)問題發(fā)現(xiàn):

          如圖1,在Rt△ABC中,AB=AC=2,∠BAC=90°,點D為BC的中點,以CD為一邊作正方形CDEF,點E恰好與點A重合,則線段BE與AF的數(shù)量關系為
          (2)拓展探究:

          在(1)的條件下,如果正方形CDEF繞點C旋轉(zhuǎn),連接BE、CE、AF,線段BE與AF的數(shù)量關系有無變化?請僅就圖2的情形給出證明;
          (3)問題解決:
          當正方形CDEF旋轉(zhuǎn)到B、E、F三點共線時候,直接寫出線段AF的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,拋物線y1=a(x+2)2+m過原點,與拋物線y2= (x﹣3)2+n交于點A(1,3),過點A作x軸的平行線,分別交兩條拋物線于點B,C.下列結(jié)論:①兩條拋物線的對稱軸距離為5;②x=0時,y2=5;③當x>3時,y1﹣y2>0;④y軸是線段BC的中垂線.正確結(jié)論是(填寫正確結(jié)論的序號).

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,△ABC中,BC>AB>AC.甲、乙兩人想在BC上取一點P,使得∠APC=2∠ABC,其作法如下: (甲)作AB的中垂線,交BC于P點,則P即為所求
          (乙)以B為圓心,AB長為半徑畫弧,交BC于P點,則P即為所求
          對于兩人的作法,下列判斷何者正確?(

          A.兩人皆正確
          B.兩人皆錯誤
          C.甲正確,乙錯誤
          D.甲錯誤,乙正確

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】在同一平面內(nèi),直線a、b相交于O,b∥c,則a與c的位置關系是( 。
          A.平行
          B.相交
          C.重合
          D.平行或重合

          查看答案和解析>>

          同步練習冊答案