日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在平面直角坐標系中,平行四邊形ABOC如圖放置,點A、C的坐標分別是(0,4)、(﹣1,0),將此平行四邊形繞點O順時針旋轉(zhuǎn)90°,得到平行四邊形ABOC′.

          (1)若拋物線經(jīng)過點CA、A,求此拋物線的解析式;

          (2)點M時第一象限內(nèi)拋物線上的一動點,問:當點M在何處時,AMA的面積最大?最大面積是多少?并求出此時M的坐標;

          (3)若P為拋物線上一動點,Nx軸上的一動點,點Q坐標為(1,0),當P、N、BQ構成平行四邊形時,求點P的坐標,當這個平行四邊形為矩形時,求點N的坐標.

          【答案】1y=-x23x4;(2△AMA′的面積最大SAMA′8,M26);(3)當P10,4),P23,4),P3,4),P4,-4)時,P、NB、Q構成平行四邊形;當這個平行四邊形為矩形時,N10,0),N23,0.

          【解析】試題分析:(1)先由OA′OA得到點A′的坐標,再用點C、AA′的坐標即可求此拋物線的解析式;(2)連接AA′, 過點M MN⊥x軸,交AA′于點N,△AMA′分割為△AMN△A′MN, △AMA′的面積=△AMA′的面積+△AMN的面積=OA′MN,設點M的橫坐標為x,借助拋物線的解析式和AA′的解析式,建立MN的長關于x的函數(shù)關系式,再據(jù)此建立△AMA′的面積關于x的二次函數(shù)關系式,再求△AMA′面積的最大值以及此時M的坐標;(3)在PN、BQ 這四個點中,B、Q 這兩個點是固定點,因此可以考慮將BQ作為邊、將BQ作為對角線分別構造符合題意的圖形,再求解.

          試題解析:(1平行四邊形ABOC繞點O順時針旋轉(zhuǎn)90°,得到平行四邊形A′B′OC′,點A的坐標是(0,4),A′的坐標為(4,0),點B的坐標為(1,4.

          拋物線過點CA,A′,設拋物線的函數(shù)解析式為yax2bxca≠0,可得:

          . 解得:.∴拋物線的函數(shù)解析式為y=-x23x4.

          2)連接AA′,設直線AA′的函數(shù)解析式為ykxb,可得

          .解得:.

          直線AA'的函數(shù)解析式是y=-x4.

          Mx,-x23x4),

          SAMA′×4×[x23x4一(一x4]=一2x28x=一2x228.

          ∴x2時,△AMA′的面積最大SAMA′8

          ∴M26.

          3)設P點的坐標為(x,-x23x4),當PN、B、Q構成平行四邊形時,

          BQ為邊時,PN∥BQPNBQ,

          ∵BQ4,x23x4±4.

          當一x23x44時,x10,x23,即P10,4),P23,4);

          當一x23x4=一4時,x3,x4,即P3,4),P4,-4);

          BQ為對角線時,PB∥x軸,即P10,4),P23,4;

          當這個平行四邊形為矩形時,即Pl0,4),P234)時,N10,0),N23,0.

          綜上所述,當P10,4),P23,4),P3,4),P4,-4)時,PN、B、Q構成平行四邊形;當這個平行四邊形為矩形時,N10,0),N23,0.

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】一個三角形的三個內(nèi)角的度數(shù)比是1 6 5 ,最大的一個內(nèi)角是__________度,按角分,它是一個________角三角形.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在矩形ABCD中,EAD邊的中點,BEAC,垂足為點F,連接DF,分析下列四個結論:①△AEF∽△CAB;②CF=2AF;③DFDC;④tan∠CAD.其中正確的結論有( )

          A. 4個 B. 3個 C. 2個 D. 1個

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】對角線________的矩形是正方形.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】計算2x(9x2-3ax+a2)+a(6x2-2ax+a2)等于( )

          A. 18x3-a3 B. 18x3+a3 C. 18x3+4ax2 D. 18x3+3a3

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知關于x的方程,(1)ax2+bx+c=0;(2)x2-4x=0;(3)1+(x-1)(x+1)=0;(4)3x2=0中,一元二次方程的個數(shù)為(  。

          A. 1 B. 2 C. 3 D. 4

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】在平面直角坐標系中,若直線y=kx+b經(jīng)過第一、三、四象限,則直線y=bx+k不經(jīng)過的象限是

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知方程2xm+1+3=5是一元一次方程,則m= _____,x=1___填“是”或“不是”這個方程的解.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】用配方法將拋物線y=-3x2+6x+2化成y=a(x+m)2+k的形式.

          查看答案和解析>>

          同步練習冊答案