日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知△ABC是等邊三角形,點O是BC上任意一點,OE,OF分別于兩邊垂直,等邊三角形的高為2,則OE+OF的值為( 。
          分析:利用等邊三角形的特殊角求出OE與OF的和,可得出其與三角形的高相等,進而可得出結(jié)論.
          解答:解:∵△ABC是等邊三角形,
          ∴AB=BC=AC,∠A=∠B=∠C=60°
          又∵OE⊥AB,OF⊥AC,∠B=∠C=60°,
          ∴OE=OB•sin60°=
          3
          2
          OB,同理OF=
          3
          2
          OC.
          ∴OE+OF=
          3
          2
          (OB+OC)=
          3
          2
          BC.
          在等邊△ABC中,高h=
          3
          2
          AB=
          3
          2
          BC.
          ∴OE+OF=h.
          又∵等邊三角形的高為2,
          ∴OE+OF=2,
          故選C.
          點評:本題考查了等邊三角形的性質(zhì):等邊三角形的三個內(nèi)角都相等,且都等于60°;三條邊都相等.
          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          如圖,已知△ABC是邊長為4的正三角形,AB在x軸上,點C在第一象限,AC與y軸交于點D,點A精英家教網(wǎng)的坐標為(-1,0).
          (1)寫出B,C,D三點的坐標;
          (2)若拋物線y=ax2+bx+c經(jīng)過B,C,D三點,求此拋物線的解析式.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,已知△ABC是等邊三角形,AB交⊙O于點D,DE⊥AC于點E.
          (1)求證:DE為⊙O的切線.
          (2)已知DE=3,求:弧BD的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,已知△ABC是等邊三角形,E是AC延長線上一點,選擇一點D,使得△CDE是等邊三角形,如果M是線段AD的中點,N是線段BE的中點,
          求證:△CMN是等邊三角形.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2012•襄城區(qū)模擬)如圖,已知△ABC是等邊三角形,D、E分別在邊BC、AC上,且CD=CE,連接DE并延長至點F,使EF=AE,連接AF、BE和CF.
          (1)求證:△BCE≌△FDC;
          (2)判斷四邊形ABDF是怎樣的四邊形,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2013•奉賢區(qū)二模)如圖,已知△ABC是等邊三角形,點D是BC延長線上的一個動點,以AD為邊作等邊△ADE,過點E作BC的平行線,分別交AB,AC的延長線于點F,G,聯(lián)結(jié)BE.
          (1)求證:△AEB≌△ADC;
          (2)如果BC=CD,判斷四邊形BCGE的形狀,并說明理由.

          查看答案和解析>>

          同步練習冊答案