日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,拋物線y=-x2+px+q的頂點(diǎn)M在第一象限,與x軸和y軸的正半軸分別交于點(diǎn)A、B,其中A的坐標(biāo)為(2,0),且四邊形AOMB的面積為
          11
          4
          ,求p、q的值.
          如圖,
          點(diǎn)B的坐標(biāo)為(0,q),頂點(diǎn)M的坐標(biāo)為(
          p
          2
          ,
          4q+p2
          4
          ),
          過點(diǎn)M作MG⊥x軸,垂足為G,
          所以S四邊形AOMB=S梯形BOGM+S△AMG=
          1
          2
          (q+
          4q+p2
          4
          p
          2
          +
          1
          2
          (2-
          p
          2
          4q+p2
          4
          ,
          =
          pq
          4
          +
          4q+p2
          4
          =
          11
          4
          ①;
          把A(2,0)代入拋物線y=-x2+px+q得,
          2p+q=4②;
          ①②聯(lián)立方程,得
          pq
          4
          +
          4q+p2
          4
          =
          11
          4
          2p+q=4
          ,
          解得
          p1=1
          q1=2
          p2=-
          1
          5
          q2=
          22
          5
          (不合題意,舍去);
          故p=1,q=2.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,將△AOB置于平面直角坐標(biāo)系中,其中點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(3,0),∠ABO=60度.
          (1)若△AOB的外接圓與y軸交于點(diǎn)D,求D點(diǎn)坐標(biāo).
          (2)若點(diǎn)C的坐標(biāo)為(-1,0),試猜想過D,C的直線與△AOB的外接圓的位置關(guān)系,并加以說明.
          (3)二次函數(shù)的圖象經(jīng)過點(diǎn)O和A且頂點(diǎn)在圓上,求此函數(shù)的解析式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,已知拋物線與x軸交于A(m,0)、B(n,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3),點(diǎn)P是拋物線的頂點(diǎn),若m-n=-2,m•n=3.
          (1)求拋物線的表達(dá)式及P點(diǎn)的坐標(biāo);
          (2)求△ACP的面積S△ACP

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

          若拋物線如圖所示,則該二次函數(shù)的解析式為______.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,Rt△AOB是一張放在平面直角坐標(biāo)系中的直角三角形紙片,點(diǎn)O與原點(diǎn)重合,點(diǎn)A在x軸上,點(diǎn)B在y軸上,OB=
          3
          ,∠BAO=30度.將Rt△AOB折疊,使BO邊落在BA邊上,點(diǎn)O與點(diǎn)D重合,折痕為BC.
          (1)求直線BC的解析式;
          (2)求經(jīng)過B,C,A三點(diǎn)的拋物線y=ax2+bx+c的解析式;若拋物線的頂點(diǎn)為M,試判斷點(diǎn)M是否在直線BC上,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,已知拋物線y=ax2+bx-3與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),經(jīng)過A、B、C三點(diǎn)的圓的圓心M(1,m)恰好在此拋物線的對(duì)稱軸上,⊙M的半徑為
          5
          .設(shè)⊙M與y軸交于D,拋物線的頂點(diǎn)為E.
          (1)求m的值及拋物線的解析式;
          (2)設(shè)∠DBC=α,∠CBE=β,求sin(α-β)的值;
          (3)探究坐標(biāo)軸上是否存在點(diǎn)P,使得以P、A、C為頂點(diǎn)的三角形與△BCE相似?若存在,請(qǐng)指出點(diǎn)P的位置,并直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          在如圖的直角坐標(biāo)系中,已知點(diǎn)A(1,0);B(0,-2),將線段AB繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)90°至AC.
          (1)求點(diǎn)C的坐標(biāo);
          (2)若拋物線y=-
          1
          2
          x2+ax+2經(jīng)過點(diǎn)C.
          ①求拋物線的解析式;
          ②在拋物線上是否存在點(diǎn)P(點(diǎn)C除外)使△ABP是以AB為直角邊的等腰直角三角形?若存在,求出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          某大眾汽車經(jīng)銷商在銷售某款汽車時(shí),以高出進(jìn)價(jià)20%標(biāo)價(jià).已知按標(biāo)價(jià)的九折銷售這款汽車9輛與將標(biāo)價(jià)直降0.2萬(wàn)元銷售4輛獲利相同.
          (1)求該款汽車的進(jìn)價(jià)和標(biāo)價(jià)分別是多少萬(wàn)元?
          (2)若該款汽車的進(jìn)價(jià)不變,按(1)中所求的標(biāo)價(jià)出售,該店平均每月可售出這款汽車20輛;若每輛汽車每降價(jià)0.1萬(wàn)元,則每月可多售出2輛.求該款汽車降價(jià)多少萬(wàn)元出售每月獲利最大?最大利潤(rùn)是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,一次函數(shù)y=-
          1
          2
          x+2
          分別交y軸、x軸于A、B兩點(diǎn),拋物線y=-x2+bx+c過A、B兩點(diǎn).
          (1)求這個(gè)拋物線的解析式;
          (2)作垂直x軸的直線x=t,在第一象限交直線AB于M,交這個(gè)拋物線于N.求當(dāng)t取何值時(shí),MN有最大值?最大值是多少?

          查看答案和解析>>

          同步練習(xí)冊(cè)答案