日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 把兩個(gè)全等的直角三角板ABC和EFG疊放在一起,使三角板EFG的直角頂點(diǎn)G與三角板ABC的斜邊中點(diǎn)O重合,其中∠B=∠F=30°,斜邊AB和EF長均為4.
          (1)當(dāng)EG⊥AC于點(diǎn)K,GF⊥BC于點(diǎn)H時(shí)(如圖①),求GH:GK的值;
          (2)現(xiàn)將三角板EFG由圖①所示的位置繞O點(diǎn)沿逆時(shí)針方向旋轉(zhuǎn),旋轉(zhuǎn)角α滿足條件:0°<α<30°(如圖②),EG交AC于點(diǎn)K,GF交BC于點(diǎn)H,GH:GK的值是否改變?證明你發(fā)現(xiàn)的結(jié)論;
          (3)在②下,連接HK,在上述旋轉(zhuǎn)過程中,設(shè)GH=x,△GKH的面積為y,求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
          (4)三角板EFG由圖①所示的位置繞O點(diǎn)逆時(shí)針旋轉(zhuǎn)時(shí),0°<α≤90°,是否存在精英家教網(wǎng)某位置使△BFG是等腰三角形?若存在,請(qǐng)直接寫出相應(yīng)的旋轉(zhuǎn)角α;若不存在,說明理由.
          分析:(1)根據(jù)30°的直角三角形的三邊關(guān)系,利用已知條件和勾股定理可以求出直角三角形的三邊長度,利用三角形的中位線可以求出GK,和GH的值,可以求出其比值.
          (2)作GM⊥AC于M,GN⊥BC于N,利用三角形相似可以求出GH與GK的比值不變.
          (3)△GKH是直角三角形,兩直角邊的比知道,可以把GK也用x的式子表示出來,最后直接利用三角形的面積公式就可以求出函數(shù)的解析式.
          (4)當(dāng)逆時(shí)針旋轉(zhuǎn)30°或90°時(shí),如圖就可以證明△EGH≌△FBH,得到∠GEK=∠GFB,從而得到∠FGB=∠GFB,得到邊相等,得出結(jié)論,旋轉(zhuǎn)90°時(shí) 也是得出∠BGF=∠F,而得到結(jié)論.
          解答:解:(1)∵∠ACB=∠EGF=90°,∠B=∠F=30°
          ∴AC=
          1
          2
          AB,EG=
          1
          2
          EF
          ∵AB=EF=4
          ∴AC=EG=2,在Rt△ACB和Rt△EGF中,由勾股定理得
          BC=GF=2
          3

          ∵GE⊥AC,GF⊥BC
          ∴GE∥BC,GF∥AC
          ∵G是AB的中點(diǎn)
          ∴K,H分別是AC、CB的中點(diǎn)
          ∴GK,GH是△ABC的中位線
          ∴GK=
          1
          2
          BC=
          3

          GH=
          1
          2
          AC=1
          ∴GH:GK=1;
          3


          (2)不變,
          理由如下:作GM⊥AC于M,GN⊥BC于N,
          ∴∠GMC=∠GNH=90°由旋轉(zhuǎn)的性質(zhì)可知:
          ∠2=∠1
          ∴△GMK∽△GNH
          GH
          GK
          =
          GN
          GM

          ∵GN:GM=1:
          3

          ∴GH:GK=1:
          3

          ∴旋轉(zhuǎn)角α滿足條件:0°<α<30°時(shí),GH:GK的值比值不變.
          精英家教網(wǎng)

          (3)連接KH,∵∠EGH=90°
          ∴S△KGH=
          GH•GK
          2

          ∵GH=x,且GH:GK=1:
          3

          ∴x:GK=1:
          3

          ∴GK=
          3
          x
          ∴y=
          x•
          3
          x
          2

          y=
          3
          2
          x2
          1<x<
          2
          3
          3
          ),
          精英家教網(wǎng)

          (4)存在,如下圖,當(dāng)α=30°或α=90°時(shí),△BFG是等腰三角形.
          精英家教網(wǎng)
          點(diǎn)評(píng):本題考查了相似三角形的判定與性質(zhì),等腰三角形的性質(zhì),旋轉(zhuǎn)的性質(zhì)以及勾股定理的運(yùn)用.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          把兩個(gè)全等的直角三角板的斜邊重合,組成一個(gè)四邊形ABCD以D為頂點(diǎn)作∠MDN,交邊AC、BC于M、N.
          (1)若∠ACD=30°,∠MDN=60°,當(dāng)∠MDN繞點(diǎn)D旋轉(zhuǎn)時(shí),AM、MN、BN三條線段之間有何種數(shù)量關(guān)系?證明你的結(jié)論;
          (2)當(dāng)∠ACD+∠MDN=90°時(shí),AM、MN、BN三條線段之間有何數(shù)量關(guān)系?證明你的結(jié)論;
          (3)如圖③,在(2)的結(jié)論下,若將M、N分改在CA、BC的延長上,完成圖3,其余條件不變,則AM、MN、BN之間有何數(shù)量關(guān)系(直接寫出結(jié)論,不必證明)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          把兩個(gè)全等的直角三角板ABC和EFG疊放在一起,且使三角板EFG的直角頂點(diǎn)G與三角板ABC的斜邊中點(diǎn)O重合,其中∠B=∠F=30°,斜邊AB和EF的長均為4。
          (1)當(dāng)EG⊥AC于點(diǎn)K,GF⊥BC于點(diǎn)H時(shí),如圖23-1,求GH:GK的值.
          (2)現(xiàn)將三角板EFG由圖23-1所示的位置繞O點(diǎn)沿逆時(shí)針方向旋轉(zhuǎn),旋轉(zhuǎn)角滿足條件:
          0°<<30°,如圖23-2,EG交AC于點(diǎn)K,GF交BC于點(diǎn)H,GH:GK的值是否改變?證明你的結(jié)論.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2007年黑龍江省哈爾濱市中考數(shù)學(xué)模擬試卷(八)(解析版) 題型:解答題

          把兩個(gè)全等的直角三角板ABC和EFG疊放在一起,使三角板EFG的直角頂點(diǎn)G與三角板ABC的斜邊中點(diǎn)O重合,其中∠B=∠F=30°,斜邊AB和EF長均為4.
          (1)當(dāng)EG⊥AC于點(diǎn)K,GF⊥BC于點(diǎn)H時(shí)(如圖①),求GH:GK的值;
          (2)現(xiàn)將三角板EFG由圖①所示的位置繞O點(diǎn)沿逆時(shí)針方向旋轉(zhuǎn),旋轉(zhuǎn)角α滿足條件:0°<α<30°(如圖②),EG交AC于點(diǎn)K,GF交BC于點(diǎn)H,GH:GK的值是否改變?證明你發(fā)現(xiàn)的結(jié)論;
          (3)在②下,連接HK,在上述旋轉(zhuǎn)過程中,設(shè)GH=x,△GKH的面積為y,求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
          (4)三角板EFG由圖①所示的位置繞O點(diǎn)逆時(shí)針旋轉(zhuǎn)時(shí),0°<α≤90°,是否存在某位置使△BFG是等腰三角形?若存在,請(qǐng)直接寫出相應(yīng)的旋轉(zhuǎn)角α;若不存在,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年湖南省岳陽市初三上學(xué)期末數(shù)學(xué)卷 題型:解答題

          把兩個(gè)全等的直角三角板ABC和EFG疊放在一起,且使三角板EFG的直角頂點(diǎn)G與三角板ABC的斜邊中點(diǎn)O重合,其中∠B=∠F=30°,斜邊AB和EF的長均為4。

          (1)當(dāng)EG⊥AC于點(diǎn)K,GF⊥BC于點(diǎn)H時(shí),如圖23-1,求GH:GK的值.

          (2)現(xiàn)將三角板EFG由圖23-1所示的位置繞O點(diǎn)沿逆時(shí)針方向旋轉(zhuǎn),旋轉(zhuǎn)角滿足條件:

          0°<<30°,如圖23-2,EG交AC于點(diǎn)K,GF交BC于點(diǎn)H,GH:GK的值是否改變?證明你的結(jié)論.

           

          查看答案和解析>>

          同步練習(xí)冊答案