日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】用一條直線截三角形的兩邊,若所截得的四邊形對角互補,則稱該直線為三角形第三條邊上的逆平行線.如圖,的截線,截得四邊形,若,則稱的逆平行線;如圖,已知中,,過邊上的點交于點,過點作邊的逆平行線,交邊于點

          1)求證:是邊的逆平行線.

          2點是的外心,連接,求證:

          3)已知,,過點作邊的逆平行線,交邊于點

          ①試探索為何值時,四邊形的面積最大,并求出最大值;

          ②在①的條件下,比較 大小關(guān)系.(“”)

          【答案】1)見解析;(2)見解析;(3)①,最大值;②=

          【解析】

          1)由條件可證得∠B∠ACB,則∠BDE∠B180∠BDE∠ACB180,結(jié)論得證;

          2)連接AO,BO,證得∠FEC∠B,由OAOC可得∠OAC∠OCA,∠BAO∠OAC,證出,即CO⊥FE,

          3設(shè)FCx,則BF6x,證△FEC∽△ABC,可得,同理可得,四邊形AGFE的面積可表示為SABCSEFCSBFG,利用二次函數(shù)的性質(zhì)可求出最大值,得到點FBC的中點,連接DF,根據(jù)EFAB邊的逆平行線,可證得DFAC邊的逆平行線, 得到G點與D點重合,再根據(jù)相似三角形的判定與性質(zhì)求出AD的長;

          G點與D點重合,故可得到ADBGAB

          1)證明理由如下:

          是的逆平行線;

          2)如圖1,連接BO

          是邊的逆平行線

          的外心

          =BO,

          ,AO=AO

          ∴△ABO≌△ACO

          ,

          ;

          3)如圖2,作AQBC

          ∵AB=AC,

          ∴AQ⊥BC,BQ=CQ=3

          ∴AQ=

          SABC===12,

          設(shè),

          ∵∠FEC∠B,∠FCE∠ACB,

          ∴△FEC∽△ABC

          同理可得∠BGF∠C,∠FBG∠ABC

          ∴△FBG∽△ABC

          (x3)2

          時,此時有最大值,最大值為

          ∴CFBF3,

          如圖3,連接DF,

          ∵BFCF,∠B∠C,BDCE

          ∴△BDF≌△CEFSAS),

          ∴∠BDF∠CEF∠BFD∠EFC,

          ∴∠BFE∠DFC,∠AEF∠ADF

          ∵∠AEF∠B180,∠A∠BFE180,

          ∴∠C∠ADF180,∠A∠DFC180

          ∴FD為邊AC的逆平行線,

          由題意可知DG點重合,

          =

          D點作DH⊥BC,

          BF×DH=,故×3×DH=

          解得DH=

          ∵AF∥DH

          ∴△BDH∽△BAF,設(shè)AD=a

          ∴BD=5-a

          解得a=

          ,四邊形的面積最大值為;

          可得DG點重合,

          ∴ADBGAB,

          故答案為:=.

          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          【題目】為了調(diào)查學生對垃圾分類及投放知識的了解情況,從甲、乙兩校各隨機抽取40名學生進行了相關(guān)知識測試,獲得了他們的成績(百分制),并對數(shù)據(jù)(成績)進行了整理、描述和分析.下面給出了部分信息.

          a.甲、乙兩校40名學生成績的頻數(shù)分布統(tǒng)計表如下:

          成績x

          學校

          4

          11

          13

          10

          2

          6

          3

          15

          14

          2

          (說明:成績80分及以上為優(yōu)秀,70~79分為良好,60~69分為合格,60分以下為不合格)

          b.甲校成績在這一組的是:

          70 70 70 71 72 73 73 73 74 75 76 77 78

          c.甲、乙兩校成績的平均分、中位數(shù)、眾數(shù)如下:

          學校

          平均分

          中位數(shù)

          眾數(shù)

          74.2

          n

          5

          73.5

          76

          84

          根據(jù)以上信息,回答下列問題:

          1)寫出表中n的值;

          2)在此次測試中,某學生的成績是74分,在他所屬學校排在前20名,由表中數(shù)據(jù)可知該學生是_____________校的學生(填),理由是__________

          3)假設(shè)乙校800名學生都參加此次測試,估計成績優(yōu)秀的學生人數(shù).

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】研究發(fā)現(xiàn),二次函數(shù))圖象上任何一點到定點(0,)和到定直線的距離相等.我們把定點(0,)叫做拋物線的焦點,定直線叫做拋物線的準線.

          1)寫出函數(shù)圖象的焦點坐標和準線方程;

          2)等邊三角形OAB的三個頂點都在二次函數(shù)圖象上,O為坐標原點,求等邊三角形的邊長;

          3M為拋物線上的一個動點,F為拋物線的焦點,P13)為定點,求MP+MF的最小值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】下表顯示的是某種大豆在相同條件下的發(fā)芽試驗結(jié)果:

          每批粒數(shù)n

          100

          300

          400

          600

          1000

          2000

          3000

          發(fā)芽的粒數(shù)m

          96

          282

          382

          570

          948

          1904

          2850

          發(fā)芽的頻率

          0.960

          0.940

          0.955

          0.950

          0.948

          0.952

          0.950

          下面有三個推斷:

          當n為400時,發(fā)芽的大豆粒數(shù)為382,發(fā)芽的頻率為0.955,所以大豆發(fā)芽的概率是0.955;

          隨著試驗時大豆的粒數(shù)的增加,大豆發(fā)芽的頻率總在0.95附近擺動,顯示出一定的穩(wěn)定性,可以估計大豆發(fā)芽的概率是0.95;

          若大豆粒數(shù)n為4000,估計大豆發(fā)芽的粒數(shù)大約為3800粒.

          其中推斷合理的是(  )

          A. ①②③ B. ①② C. ①③ D. ②③

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】為激發(fā)學生的閱讀興趣,培養(yǎng)學生良好的閱讀習慣,我區(qū)某校欲購進一批學生喜歡的圖書,學校組織學生會隨機抽取部分學生進行問卷調(diào)查,被調(diào)查學生須從文史類、社科類、小說類、生活類中選擇自己喜歡的一類,根據(jù)調(diào)查結(jié)果繪制了統(tǒng)計圖(未完成),請根據(jù)圖中信息,解答下列問題:

          1)填空或選擇:此次共調(diào)查了______名學生;圖2小說類所在扇形的圓心角為______度;學生會采用的調(diào)查方式是______A.普查 B.抽樣調(diào)查

          2)將條形統(tǒng)計圖(圖1)補充完整;

          3)若該校共有學生2500人,試估計該校喜歡社科類書籍的學生人數(shù).

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,點O為正六邊形ABCDEF的中心,點MAF中點,以點O為圓心,以OM的長為半徑畫弧得到扇形MON,點NBC上;以點E為圓心,以DE的長為半徑畫弧得到扇形DEF,把扇形MON的兩條半徑OM,ON重合,圍成圓錐,將此圓錐的底面半徑記為r1;將扇形DEF以同樣方法圍成的圓錐的底面半徑記為r2,則r1:r2=_____

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在平行四邊形ABCD中,AC、BD相交于點O,點EOA的中點,連接BE并延長交AD于點F,已知SAEF3,則下列結(jié)論:SBCE30;SABE9;AEF∽△ACD,其中一定正確的是( 。

          A.①②③④B.①③C.②③④D.①②③

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,Q為正方形ABCD外一點,連接BQ,過點DDQBQ,垂足為Q,G、K分別為AB、BC上的點,連接AK、DG,分別交BQF、EAKDG,垂足為點H,AF5DH8,FBQ中點,M為對角線BD的中點,連接HM并延長交正方形于點N,則HN的長為_____

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在RtABC中,∠C90°,AC3,BC4,點DAB的中點,點P是直線BC上一點,將△BDP沿DP所在的直線翻折后,點B落在B1處,若B1DBC,則點P與點B之間的距離為(  )

          A.1B.C.1 3D.5

          查看答案和解析>>

          同步練習冊答案