日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在等腰梯形ABCD中,AD∥BC,AB=CD=10,AD=6,BC=18,M是CD的中點,P是BC邊上的一動點(P與B,C不重合),連接PM并延長交AD的延長線于Q.
          (1)當P在B,C之間運動到什么位置時,四邊形ABPQ是平行四邊形?請說明理由.
          (2)當四邊形ABPQ是直角梯形時,點P與C距離是多少?

          (1)解:當CP=6時,四邊形ABPQ是平行四邊形.
          理由:∵AD∥BC,
          ∴∠C=∠CDQ,∠QPC=∠Q,
          ∵CM=DM
          ∴△CMP≌△DMQ,
          ∴PC=DQ=6,
          而BP=BC-PC=18-6=12,
          AQ=AD+DQ=6+6=12,
          ∴BP=AQ,
          ∵AD∥BC,
          ∴四邊形ABPQ是平行四邊形.

          (2)解:作AE⊥BC于E,DF⊥BC于F,
          由于AB=CD,∠B=∠C,∠AEB=∠DFC=90°,
          ∴△ABE≌△DCF,
          ∴BE=FC,
          由于AE∥DF,AD∥EF,
          ∴四邊形AEFD是平行四邊形,
          ∴AD=EF,
          ,
          ,
          由(1)知:QM=MP,
          ∴MP=4,
          ,
          答:當四邊形ABPQ是直角梯形時,點P與C距離是3.
          分析:(1)根據(jù)AAS證△CMP≌△DMQ,推出PC=DQ=6,求出BP、AQ,推出BP=AQ即可;
          (2)作AE⊥BC于E,DF⊥BC于F,根據(jù)AAS證△ABE≌△DCF,推出BE=FC,證平行四邊形AEFD,求出AE、BE的長,根據(jù)勾股定理求出PC即可.
          點評:本題主要考查對勾股定理,平行四邊形的性質(zhì)和判定,全等三角形的性質(zhì)和判定,平行線的性質(zhì),等腰梯形的性質(zhì)等知識點的理解和掌握,能綜合運用這些性質(zhì)進行計算和推理是解此題的關(guān)鍵.
          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          如圖,在等腰梯形ABCD中,AB∥DC,AB=8cm,CD=2cm,AD=6cm.點P從點A出發(fā),以2cm/s的速度沿AB向終點B運動;點Q從點C出發(fā),以1cm/s的速度沿CD、DA向終點A運動(P、Q兩點中,有一個點運動到終點時,所有運動即終止).設P、Q同時出發(fā)并運動了t秒.
          (1)當PQ將梯形ABCD分成兩個直角梯形時,求t的值;
          (2)試問是否存在這樣的t,使四邊形PBCQ的面積是梯形ABCD面積的一半?若存精英家教網(wǎng)在,求出這樣的t的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          10、如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,E為AD的中點,求證:BE=CE.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)已知:如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,點E、F分別在AB、DC上,且BE=3EA,CF=3FD.
          求證:∠BEC=∠CFB.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          (2012•廣州)如圖,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于點E,且EC=3,則梯形ABCD的周長是( 。

          查看答案和解析>>

          科目:初中數(shù)學 來源:中考必備’04全國中考試題集錦·數(shù)學 題型:044

          如圖,在等腰梯形AB∥⊥CD中,BC∥AD,BC=8,AD=20,AB=DC=10,點P從A點出發(fā)沿AD邊向點D移動,點Q自A點出發(fā)沿A→B→C的路線移動,且PQ∥DC,若AP=x,梯形位于線段PQ右側(cè)部分的面積為S.

            

          (1)分別求出當點Q位于AB、BC上時,S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

          (2)當線段PQ將梯形AB∥⊥CD分成面積相等的兩部分時,x的值是多少?

          (3)當(2)的條件下,設線段PQ與梯形AB∥⊥CD的中位線EF交于O點,那么OE與OF的長度有什么關(guān)系?借助備用圖說明理由;并進一步探究:對任何一個梯形,當一直線l經(jīng)過梯形中位線的中點并滿足什么條件時,一定能平分梯形的面積?(只要求說出條件,不需要證明)

          查看答案和解析>>

          同步練習冊答案