日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,拋物線a≠0)的對稱軸為直=1,與軸的一個交點坐標(biāo)為(-1,0),其部分圖象如圖所示.下列結(jié)論:① ;②方程=0的兩個根是,; ③;④當(dāng)時,的取值范圍是;⑤當(dāng)x1<x2<0時,y1<y2.其中結(jié)論正確的個數(shù)是( )

          A. 1個 B. 2個 C. 3個 D. 4個

          【答案】C

          【解析】分析:利用拋物線與x軸的交點個數(shù)可對①進(jìn)行判斷;利用拋物線的對稱性得到拋物線與x軸的一個交點坐標(biāo)為(3,0),則可對②進(jìn)行判斷;由對稱軸方程得到b=-2a,然后根據(jù)x=-1時函數(shù)值為0可得到3a+c=0,則可對③進(jìn)行判斷;根據(jù)拋物線在x軸上方所對應(yīng)的自變量的范圍可對④進(jìn)行判斷;根據(jù)二次函數(shù)的性質(zhì)對⑤進(jìn)行判斷.

          詳解:∵拋物線與x軸有2個交點,

          b2-4ac>0,所以①正確;

          ∵拋物線的對稱軸為直線x=1,

          而點(-1,0)關(guān)于直線x=1的對稱點的坐標(biāo)為(3,0),

          ∴方程ax2+bx+c=0的兩個根是x1=-1,x2=3,所以②正確;

          x=-=1,即b=-2a,

          x=-1時,y=0,即a-b+c=0,

          a+2a+c=0,所以③錯誤;

          ∵拋物線與x軸的兩點坐標(biāo)為(-1,0),(3,0),

          ∴當(dāng)-1<x<3時,y>0,所以④錯誤;

          ∵拋物線的對稱軸為直線x=1,

          ∴當(dāng)x<1時,yx增大而增大,所以⑤正確.

          故答案為①②⑤

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,平面直角坐標(biāo)系中,二次函數(shù)y=﹣x2+bx+c的圖線與坐標(biāo)軸分別交于點A、B、C,其中點A(0,8),OB=OA.

          (1)求二次函數(shù)的表達(dá)式;

          (2)若OD=OB,點F為該二次函數(shù)在第二象限內(nèi)圖象上的動點,EDF的中點,當(dāng)△CEF的面積最大時,求出點E的坐標(biāo);

          (3)將三角形CEFE旋轉(zhuǎn)180°,C點落在M處,若M恰好在該拋物線上,求出此時△CEF的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】(1)方法回顧

          在學(xué)習(xí)三角形中位線時,為了探索三角形中位線的性質(zhì),思路如下:

          第一步添加輔助線:如圖1,在△ABC中,延長DE (D、E分別是ABAC的中點)到點F,使得EFDE,連接CF;

          第二步證明△ADE≌△CFE,再證四邊形DBCF是平行四邊形,從而得到DEBC,DEBC

          (2)問題解決

          如圖2,在正方形ABCD中,EAD的中點,G、F分別為AB、CD邊上的點,若AG2,DF3,∠GEF90°,求GF的長.

          (3)拓展研究

          如圖3,在四邊形ABCD中,∠A100°,∠D110°,EAD的中點,G、F分別為ABCD邊上的點,若AG4,DF,∠GEF90°,求GF的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,點是邊長為2的菱形對角線上的一個動點,點分別是,邊上的中點,則的最小值是(

          A.1B.2C.D.4

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,直角三角板的直角頂點在正方形的頂點上,若,則下列結(jié)論錯誤的是( )

          A. B. C. ∠4=450 D. ∠5=300

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖.在Rt△ABC,A=90°AB=AC=4ERt△ABC邊上一點,以每秒1單位的速度從點C出發(fā),沿著CAB的路徑運動到點B為止連接CE,以點C為圓心CE長為半徑作C,C與線段BC交于點D設(shè)扇形DCE面積為SE的運動時間為t則在以下四個函數(shù)圖象中,最符合扇形面積S關(guān)于運動時間t的變化趨勢的是( )

          A. B.

          C. D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:正方形ABCD中,∠MAN=45°∠MAN繞點A順時針旋轉(zhuǎn),它的兩邊分別交CBDC(或它們的延長線)于點M,N.當(dāng)∠MAN繞點A旋轉(zhuǎn)到BM=DN(如圖1),易證BM+DN=MN

          (1)當(dāng)∠MAN繞點A旋轉(zhuǎn)到BM≠DN(如圖2),線段BM,DNMN之間有怎樣的數(shù)量關(guān)系?寫出猜想,并加以證明.

          (2)當(dāng)∠MAN繞點A旋轉(zhuǎn)到如圖3的位置時,線段BM,DNMN之間又有怎樣的數(shù)量關(guān)系?請直接寫出你的猜想.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知直線l1l2l3l4,相鄰兩條平行線間的距離都是1,正方形ABCD的四個頂點分別在四條直線上,則正方形ABCD的面積為( 。

          A. B. C. 3 D. 5

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知⊙O是以AB為直徑的ABC的外接圓,過點A作⊙O的切線交OC的延長線于點D,交BC的延長線于點E.

          (1)求證:∠DAC=DCE;

          (2)若AE=ED=2,求⊙O的半徑.

          查看答案和解析>>

          同步練習(xí)冊答案