日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】古希臘著名的畢達哥拉斯學派把1,36,10…這樣的數(shù)稱為三角形數(shù),而把1,49,16…這樣的數(shù)稱為正方形數(shù).從圖中可以發(fā)現(xiàn),任何一個大于1正方形數(shù)都可以看作兩個相鄰三角形數(shù)之和.下列等式中,符合這一規(guī)律的是( 。

          A.133+10B.259+16C.3615+21D.4918+31

          【答案】C

          【解析】

          本題考查探究、歸納的數(shù)學思想方法.題中明確指出:任何一個大于1的“正方形數(shù)”都可以看作兩個相鄰“三角形數(shù)”之和.由于“正方形數(shù)”為兩個“三角形數(shù)”之和,正方形數(shù)可以用代數(shù)式表示為:(n+12,兩個三角形數(shù)分別表示為nn+1)和n+1)(n+2),所以由正方形數(shù)可以推得n的值,然后求得三角形數(shù)的值.

          A13不是正方形數(shù);選項B、D中等式右側(cè)并不是兩個相鄰三角形數(shù)之和.

          故選:C

          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          【題目】結(jié)合數(shù)軸與絕對值的知識回答下列問題:

          一般地,數(shù)軸上表示數(shù)m和數(shù)n的兩點之間的距離公式為|mn|

          1)例如:數(shù)軸上表示41的兩點之間的距離為|41|=   

          數(shù)軸表示5和﹣2的兩點之間的距離為|5﹣(﹣2|=|5+2|=   

          2)數(shù)軸上表示數(shù)a的點與表示﹣4的點之間的距離表示為   

          數(shù)軸上表示數(shù)a的點與表示2的點之間的距離表示為   

          若數(shù)軸上a位于﹣42之間,則|a+4|+|a2|的值為   ;

          3)當a=   時,|a+5|+|a1|+|a4|的值最小,最小值為   

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】一只小蟲從點A出發(fā)向北偏西30°方向,爬行了3cm到點B,再從點B出發(fā)向北偏東60°爬了3cm到點C

          1)試畫圖確定A、B、C的位置;

          2)從圖上量出點C到點A的距離(精確到01cm);

          3)指出點C在點A的什么方位?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,平行四邊形ABCD中,以A為圓心,AB為半徑的圓交ADF,交BCG,延長BA交圓于E.

          (1)若ED與⊙A相切,試判斷GD與⊙A的位置關(guān)系,并證明你的結(jié)論;

          (2)在(1)的條件不變的情況下,若GC=CD,求∠C.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】二次函數(shù)yax2bxca0圖象如圖所示,下列結(jié)論:①abc0;②2ab0;③當m1時,abam2bm;④abc0;⑤若,且,則,其中正確的有( )

          A. 1B. 2C. 3D. 4

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點OOEAB,交BCE.

          (1)求證:ED為⊙O的切線;

          (2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

          【答案】(1)證明見解析;(2)

          【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
          (2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OEAB,證得根據(jù)相似三角形的對應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得的長,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

          試題解析:(1)證明:連接OD,

          OEAB,

          ∴∠COE=CAD,EOD=ODA,

          OA=OD,

          ∴∠OAD=ODA,

          ∴∠COE=DOE

          在△COE和△DOE中,

          ∴△COE≌△DOE(SAS),

          EDOD

          ED的切線;

          (2)連接CD,交OEM,

          RtODE中,

          OD=32,DE=2,

          OEAB,

          ∴△COE∽△CAB

          AB=5,

          AC是直徑,

          EFAB,

          SADF=S梯形ABEFS梯形DBEF

          ∴△ADF的面積為

          型】解答
          結(jié)束】
          25

          【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.

          (1)求ba的關(guān)系式和拋物線的頂點D坐標(用a的代數(shù)式表示);

          (2)直線與拋物線的另外一個交點記為N,求DMN的面積與a的關(guān)系式;

          (3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關(guān)于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】計算題

          112(16)+(4)5

          2

          3

          4(8a-7b)-(4a-5b)

          5

          6)先化簡再求值,, 其中

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】已知一元二次方程ax2+bx+c=0(a≠0)中,下列說法:

          ①若a+b+c=0,則b2﹣4ac>0;

          ②若方程兩根為﹣12,則2a+c=0;

          ③若方程ax2+c=0有兩個不相等的實根,則方程ax2+bx+c=0必有兩個不相等的實根;

          ④若b=2a+c,則方程有兩個不相等的實根.其中正確的有( 。

          A. ①②③ B. ①②④ C. ②③④ D. ①②③④

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,某人在山坡坡腳C處測得一座建筑物頂點A的仰角為63.4°,沿山坡向上走到P處再測得該建筑物頂點A的仰角為53°.已知BC=90米,且B、C、D在同一條直線上,山坡坡度i=5:12.

          (1)求此人所在位置點P的鉛直高度.(結(jié)果精確到0.1米)

          (2)求此人從所在位置點P走到建筑物底部B點的路程(結(jié)果精確到0.1米)

          測傾器的高度忽略不計,參考數(shù)據(jù):tan53°≈,tan63.5°≈2)

          查看答案和解析>>

          同步練習冊答案