日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在平行四邊形ABCD中,以點A為圓心,AB長為半徑畫弧交AD于點F,再分別以點B、F為圓心,大于 BF長為半徑畫弧,兩弧交于一點P,連
          接AP并延長交BC于點E,連接EF.

          (1)四邊形ABEF是;(選填矩形、菱形、正方形、無法確定)(直接填寫結果)
          (2)AE,BF相交于點O,若四邊形ABEF的周長為40,BF=10,則AE的長為 , ∠ABC=°.(直接填寫結果)

          【答案】
          (1)菱形
          (2)10 ;120
          【解析】解:(1)在△AEB和△AEF中,
          ,
          ∴△AEB≌△AEF,
          ∴∠EAB=∠EAF,
          ∵AD∥BC,
          ∴∠EAF=∠AEB=∠EAB,
          ∴BE=AB=AF.
          ∵AF∥BE,
          ∴四邊形ABEF是平行四邊形
          ∵AB=AF,
          ∴四邊形ABEF是菱形.
          所以答案是菱形.
          2)∵四邊形ABEF是菱形,
          ∴AE⊥BF,BO=OF=5,∠ABO=∠EBO,
          ∵AB=10,
          ∴AB=2BO,∵∠AOB=90°
          ∴∠BA0=30°,∠ABO=60°,
          ∴AO= BO=5 ,∠ABC=2∠ABO=120°.
          所以答案是10 ,120.

          【考點精析】解答此題的關鍵在于理解平行四邊形的性質的相關知識,掌握平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分.

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          【題目】在平面直角坐標系中,拋物線y=﹣ x2+bx+c與x軸交于點A,B,與y軸交于點C,直線y=x+4經(jīng)過A,C兩點.
          (1)求拋物線的解析式;
          (2)在AC上方的拋物線上有一動點P.
          ①如圖1,當點P運動到某位置時,以AP,AO為鄰邊的平行四邊形第四個頂點恰好也在拋物線上,求出此時點P的坐標;

          ②如圖2,過點O,P的直線y=kx交AC于點E,若PE:OE=3:8,求k的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】(列方程(組)及不等式解應用題)
          春節(jié)期間,某商場計劃購進甲、乙兩種商品,已知購進甲商品2件和乙商品3件共需270元;購進甲商品3件和乙商品2件共需230元.
          (1)求甲、乙兩種商品每件的進價分別是多少元?
          (2)商場決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場需求,需購進甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請你求出獲利最大的進貨方案,并確定最大利潤.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】為了豐富學生課外小組活動,培養(yǎng)學生動手操作能力,王老師讓學生把5m長的彩繩截成2m或1m的彩繩,用來做手工編織,在不造成浪費的前提下,你有幾種不同的截法( 。
          A.1
          B.2
          C.3
          D.4

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,在平面直角坐標系中,已知△ABC的三個頂點的坐標分別為A(﹣3,5),B(﹣2,1),C(﹣1,3).

          (1)若△ABC經(jīng)過平移后得到△A1B1C1 , 已知點C1的坐標為(4,0),寫出頂點A1 , B1的坐標;
          (2)若△ABC和△A1B2C2關于原點O成中心對稱圖形,寫出△A1B2C2的各頂點的坐標;
          (3)將△ABC繞著點O按順時針方向旋轉90°得到△A2B3C3 , 寫出△A2B3C3的各頂點的坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】問題背景:
          如圖①,在四邊形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究線段AC,BC,CD之間的數(shù)量關系.
          小吳同學探究此問題的思路是:將△BCD繞點D,逆時針旋轉90°到△AED處,點B,C分別落在點A,E處(如圖②),易證點C,A,E在同一條直線上,并且△CDE是等腰直角三角形,所以CE= CD,從而得出結論:AC+BC= CD.
          簡單應用:

          (1)在圖①中,若AC= ,BC=2 ,則CD=
          (2)如圖③,AB是⊙O的直徑,點C、D在⊙上, = ,若AB=13,BC=12,求CD的長.
          拓展規(guī)律:
          (3)如圖④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的長(用含m,n的代數(shù)式表示)
          (4)如圖⑤,∠ACB=90°,AC=BC,點P為AB的中點,若點E滿足AE= AC,CE=CA,點Q為AE的中點,則線段PQ與AC的數(shù)量關系是

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】在學習了圖形的旋轉知識后,數(shù)學興趣小組的同學們又進一步對圖形旋轉前后的線段之間、角之間的關系進行了探究.

          (一)嘗試探究
          如圖1,在四邊形ABCD中,AB=AD,∠BAD=60°,∠ABC=∠ADC=90°,點E、F分別在線段BC、CD上,∠EAF=30°,連接EF.
          (1)如圖2,將△ABE繞點A逆時針旋轉60°后得到△A′B′E′(A′B′與AD重合),請直接寫出∠E′AF=度,線段BE、EF、FD之間的數(shù)量關系為
          (2)如圖3,當點E、F分別在線段BC、CD的延長線上時,其他條件不變,請?zhí)骄烤段BE、EF、FD之間的數(shù)量關系,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】某中學為調查本校學生周末平均每天做作業(yè)所用時間的情況,隨機調查了50名同學,下圖是根據(jù)調查所得數(shù)據(jù)繪制的統(tǒng)計圖的一部分.

          請根據(jù)以上信息,解答下列問題:

          1)在這次調查的數(shù)據(jù)中,做作業(yè)所用時間的眾數(shù)是 ,中位數(shù)是 ,平均數(shù)是 ;

          2)若該校共有2000名學生,根據(jù)以上調查結果估計該校全體學生每天做作業(yè)時間在3小時內(含3小時)的同學共有多少人?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖1,已知A(a,0),B (0,b)分別為兩坐標軸上的點,且a,b滿足a2﹣24a+|b﹣12|=﹣144,且3OC=OA.

          (1)A、B、C三點的坐標;

          (2)D(2,0),過點D的直線分別交AB、BCE、F兩點,且DF=DE,設E、F兩點的橫坐標分別為xE、xP,求xE+xP的值;

          (3)如圖2,若M(4,8),點Px軸上A點右側一動點,AHPM于點H,在HM上取點G,使HG=HA,連接CG,當點P在點A右側運動時,∠CGM的度數(shù)是否改變?若不變,請求其值;若改變,請說明理由.

          查看答案和解析>>

          同步練習冊答案