日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 求點A(-3,-4)到坐標(biāo)軸的距離.

          解:點A(-3,-4)到x軸的距離為4,到y(tǒng)軸的距離為3.
          分析:據(jù)點(-3,-4)的坐標(biāo),可確定點到x軸的距離為-4的絕對值,到y(tǒng)軸的距離為-3的絕對值.
          點評:本題解題的關(guān)鍵牢記點(x,y)到x軸的距離為y的絕對值,到y(tǒng)軸的距離為x的絕對值.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在直角坐標(biāo)系中,點A的坐標(biāo)為(-4,0),點C為y軸上一動點,連接AC,過點精英家教網(wǎng)C作CB⊥AC,交x軸于B.
          (1)當(dāng)點B坐標(biāo)為(1,0)時,求點C的坐標(biāo);
          (2)如果sinA和cosA是關(guān)于x的一元二次方程x2+ax+b=0的兩個實數(shù)根,過原點O作OD⊥AC,垂足為D,且點D的縱坐標(biāo)為a2,求b的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          在平面直角坐標(biāo)系中,現(xiàn)將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐標(biāo)軸上,且精英家教網(wǎng)點A(0,2),點C(-1,0),如圖所示:拋物線y=2ax2+ax-
          32
          經(jīng)過點B.
          (1)寫出點B的坐標(biāo)
           
          ;
          (2)求拋物線的解析式;
          (3)若三角板ABC從點C開始以每秒1個單位長度的速度向x軸正方向平移,求點A落在拋物線上時所用的時間,并求三角板在平移過程掃過的面積;
          (4)在拋物線上是否還存在點P(點B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,求所有點P的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在平面直角坐標(biāo)系中,有點M(0,-3),⊙M與x軸交于點A、B(點A在點 B的左側(cè)),與y軸交于點C、E;拋物線y=ax2+bx-8(a≠0)經(jīng)過A、C兩點,點D是拋物線的頂點;
          (1)求點A、B、C的坐標(biāo);
          (2)試探究:當(dāng)a取何值時,拋物線y=ax2+bx-8(a≠0)的對稱軸與⊙M相切?
          (3)當(dāng)點D在第四象限內(nèi)時,連接BC、BD,且tan∠CBD=
          12

          ①試確定a的值;
          ②設(shè)此時的拋物線與x軸的另一個交點是點F,在拋物線的對稱軸上找一點T,使|TM-TF|達(dá)到最大,請求出最大值與點T的坐標(biāo).
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,點A為第二象限內(nèi)一點,且AO=5
          5
          ,cos精英家教網(wǎng)α=
          2
          5
          5

          (1)求點A的坐標(biāo);
          (2)在x軸上,是否存在一點P,使得cos∠APO=
          12
          13
          ?若存在,求出P點坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          在平面直角坐標(biāo)系中,點0是坐標(biāo)原點,四邊形ABCD為菱形,AB邊在x軸上,點D在y軸上,點A的坐標(biāo)是(-6,0),AB=10.
          (1)求點C的坐標(biāo):
          (2)連接BD,點P是線段CD上一動點(點P不與C、D兩點重合),過點P作PE∥BC交BD于點E,過點B作BQ⊥PE交PE的延長線于點Q.設(shè)PC的長為x,PQ的長為y,求y與x之間的函數(shù)關(guān)系式(直接寫出自變量x的取值范圍);
          (3)在(2)的條件下,連接AQ、AE,當(dāng)x為何值時,S△BQE+S△AQE=
          45
          S△DEP?并判斷此時以點P為圓心,以5為半徑的⊙P與直線BC的位置關(guān)系,請說明理由.
          精英家教網(wǎng)

          查看答案和解析>>

          同步練習(xí)冊答案