日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,直線EF,CD相交于點0,OA⊥OB,且OC平分∠AOF,

          (1)若∠AOE=40°,求∠BOD的度數(shù);
          (2)若∠AOE=α,求∠BOD的度數(shù);(用含α的代數(shù)式表示)
          (3)從(1)(2)的結(jié)果中能看出∠AOE和∠BOD有何關(guān)系?

          【答案】
          (1)解:∵∠AOE+∠AOF=180°(互為補角),∠AOE=40°,

          ∴∠AOF=140°;

          又∵OC平分∠AOF,

          ∴∠FOC= ∠AOF=70°,

          ∴∠EOD=∠FOC=70°(對頂角相等);

          而∠BOE=∠AOB﹣∠AOE=50°,

          ∴∠BOD=∠EOD﹣∠BOE=20°;


          (2)解:∵∠AOE+∠AOF=180°(互為補角),∠AOE=α,

          ∴∠AOF=180°﹣α;

          又∵OC平分∠AOF,

          ∴∠FOC= ∠AOF=90°﹣ α,

          ∴∠EOD=∠FOC=90°﹣ α(對頂角相等);

          而∠BOE=∠AOB﹣∠AOE=90°﹣α,

          ∴∠BOD=∠EOD﹣∠BOE= α;


          (3)解:從(1)(2)的結(jié)果中能看出∠AOE=2∠BOD.


          【解析】利用平分線的性質(zhì)、互為余角的性質(zhì)可解決,特殊情況的結(jié)論可延伸到一般情況.

          【考點精析】本題主要考查了角的運算和對頂角和鄰補角的相關(guān)知識點,需要掌握角之間可以進行加減運算;一個角可以用其他角的和或差來表示;兩直線相交形成的四個角中,每一個角的鄰補角有兩個,而對頂角只有一個才能正確解答此題.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在離水面高度為5米的岸上,有人用繩子拉船靠岸,開始時繩子BC的長為13米,此人以0.5米每秒的速度收繩,10秒后船移動到點D的位置,問船向岸邊移動了多少米?(假設(shè)繩子是直的,結(jié)果保留根號)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在菱形ABCD中,AB=10,對角線AC=12.若過點A作AE⊥CD,垂足為E,則AE的長為(
          A.9
          B.
          C.
          D.9.5

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】【問題提出】

          用n根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?

          【問題探究】

          不妨假設(shè)能搭成m種不同的等腰三角形,為探究m與n之間的關(guān)系,我們可以先從特殊入手,通過試驗、觀察、類比、最后歸納、猜測得出結(jié)論.

          【探究一】

          (1)用3根相同的木棒搭一個三角形,能搭成多少種不同的等腰三角形?

          此時,顯然能搭成一種等腰三角形.

          所以,當(dāng)n=3時,m=1.

          (2)用4根相同的木棒搭一個三角形,能搭成多少種不同的等腰三角形?

          只可分成1根木棒、1根木棒和2根木棒這一種情況,不能搭成三角形.

          所以,當(dāng)n=4時,m=0.

          (3)用5根相同的木棒搭一個三角形,能搭成多少種不同的等腰三角形?

          若分成1根木棒、1根木棒和3根木棒,則不能搭成三角形.

          若分成2根木棒、2根木棒和1根木棒,則能搭成一種等腰三角形.

          所以,當(dāng)n=5時,m=1.

          (4)用6根相同的木棒搭一個三角形,能搭成多少種不同的等腰三角形?

          若分成1根木棒、1根木棒和4根木棒,則不能搭成三角形.

          若分成2根木棒、2根木棒和2根木棒,則能搭成一種等腰三角形.

          所以,當(dāng)n=6時,m=1.

          綜上所述,可得:表①

          【探究二】

          (1)用7根相同的木棒搭一個三角形,能搭成多少種不同的三角形?

          (仿照上述探究方法,寫出解答過程,并將結(jié)果填在表②中)

          (2)用8根、9根、10根相同的木棒搭一個三角形,能搭成多少種不同的等腰三角形?

          (只需把結(jié)果填在表②中)

          表②

          你不妨分別用11根、12根、13根、14根相同的木棒繼續(xù)進行探究,…

          【問題解決】:

          用n根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?(設(shè)n分別等于4k﹣1,4k,4k+1,4k+2,其中k是正整數(shù),把結(jié)果填在表③中)

          表③

          【問題應(yīng)用】:

          用2016根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?(寫出解答過程),其中面積最大的等腰三角形每腰用了 根木棒.(只填結(jié)果)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在△ABC中,AB=AC,D、E分別在AC、AB邊上,且BC=BD,AD=DE=EB,求∠A的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知⊙O為△ABC的外接圓,圓心O在AB上.

          (1)在圖1中,用尺規(guī)作圖作∠BAC的平分線AD交⊙O于D(保留作圖痕跡,不寫作法與證明);

          (2)如圖2,設(shè)∠BAC的平分線AD交BC于E,⊙O半徑為5,AC=4,連接OD交BC于F.

          ①求證:OD⊥BC;

          ②求EF的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】計算:m6m3的結(jié)果(
          A.m18
          B.m9
          C.m3
          D.m2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】圖1、圖2為同一長方體房間的示意圖,圖3為該長方體的表面展開圖.

          (1)蜘蛛在頂點A′處.

          ①蒼蠅在頂點B處時,試在圖1中畫出蜘蛛為捉住蒼蠅,沿墻面爬行的最近路線

          ②蒼蠅在頂點C處時,圖2中畫出了蜘蛛捉住蒼蠅的兩條路線,往天花板ABCD爬行的最近路線A′GC和往墻面BB′C′C爬行的最近路線A′HC,試通過計算判斷哪條路線更近;

          (2)在圖3中,半徑為10dm的⊙M與D′C′相切,圓心M到邊CC′的距離為15dm,蜘蛛P在線段AB上,蒼蠅Q在⊙M的圓周上,線段PQ為蜘蛛爬行路線,若PQ與⊙M相切,試求PQ長度的范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知一個多邊形的內(nèi)角和等于900,則這個多邊形是(

          A. 五邊形 B. 六邊形 C. 七邊形 D. 八邊形

          查看答案和解析>>

          同步練習(xí)冊答案