日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,拋物線y=-ax2+ax+6a交x軸負(fù)半軸于點(diǎn)A,交x軸正半軸于點(diǎn)B,交y軸正半軸于點(diǎn)D,精英家教網(wǎng)O為坐標(biāo)原點(diǎn),拋物線上一點(diǎn)C的橫坐標(biāo)為1.
          (1)求A,B兩點(diǎn)的坐標(biāo);
          (2)求證:四邊形ABCD的等腰梯形;
          (3)如果∠CAB=∠ADO,求α的值.
          分析:(1)令y=0,得出的方程的根就是A、B的橫坐標(biāo).
          (2)根據(jù)拋物線的解析式可知:D(0,6a),C(1,6a),因此CD∥x軸,只需證AD=BC即可,過C作CE⊥AB,可通過證△AOD和△BEC全等來得出結(jié)論.
          (3)如果∠CAB=∠ADO,則有△AOD∽△CEA,可通過相似三角形得出的對(duì)應(yīng)成比例線段來求出a的值.
          解答:(1)解:令y=0,則有0=-ax2+ax+6a,
          解得x=-2,x=3.
          ∵A在x軸負(fù)半軸,B在x軸正半軸
          ∴A(-2,0),B(3,0).

          (2)證明:過C作CE⊥AB于E;精英家教網(wǎng)
          易知D(0,6a),C(1,6a).
          因此CD∥AB
          ∵AO=BE=2,OD=CE=6a,∠AOD=∠CEB=90°
          ∴△AOD≌△BEC
          ∴AD=BC
          ∴四邊形ABCD是等腰梯形.

          (3)解:∵∠CAB=∠ADO,∠AOD=∠AEC=90°
          ∴△DAO∽△AEC
          DO
          AE
          =
          AO
          EC
          ,
          ∵DO=EC=6a
          ∴36a2=AE•AO=3•2
          ∴a=±
          6
          6

          ∵D點(diǎn)在y軸正半軸,
          ∴6a>0,即a>0
          ∴a=
          6
          6
          點(diǎn)評(píng):本題中主要考查了二次函數(shù)的性質(zhì)、等腰梯形的判定、全等三角形和相似三角形的判定和性質(zhì)等知識(shí)點(diǎn).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          26、已知:如圖,拋物線C1,C2關(guān)于x軸對(duì)稱;拋物線C1,C3關(guān)于y軸對(duì)稱.拋物線C1,C2,C3與x軸相交于A、B、C、D四點(diǎn);與y相交于E、F兩點(diǎn);H、G、M分別為拋物線C1,C2,C3的頂點(diǎn).HN垂直于x軸,垂足為N,且|OE|>|HN|,|AB|≠|(zhì)HG|
          (1)A、B、C、D、E、F、G、H、M9個(gè)點(diǎn)中,四個(gè)點(diǎn)可以連接成一個(gè)四邊形,請(qǐng)你用字母寫出下列特殊四邊形:菱形
          AHBG
          ;等腰梯形
          HGEF
          ;平行四邊形
          EGFM
          ;梯形
          DMHC
          ;(每種特殊四邊形只能寫一個(gè),寫錯(cuò)、多寫記0分)
          (2)證明其中任意一個(gè)特殊四邊形;
          (3)寫出你證明的特殊四邊形的性質(zhì).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,拋物線交x軸于點(diǎn)A(-2,0),點(diǎn)B(4,0),交y軸于點(diǎn)C(0,4).
          (1)求拋物線的解析式,并寫出頂點(diǎn)D的坐標(biāo);
          (2)若直線y=x交拋物線于M,N兩點(diǎn),交拋物線的對(duì)稱軸于點(diǎn)E,連接BC,EB,EC.試判斷△EBC的形狀,并加以證明;
          (3)設(shè)P為直線MN上的動(dòng)點(diǎn),過P作PF∥ED交直線MN上方的拋物線于點(diǎn)F.問:在直線MN上是否存在點(diǎn)P,使得以P,E,D,F(xiàn)為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出點(diǎn)P及相應(yīng)的點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,拋物線的頂點(diǎn)坐標(biāo)為M(1,4),與x軸的一個(gè)交點(diǎn)是A(-1,0),與y軸交于點(diǎn)B,直線x=1交x軸于點(diǎn)N.
          (1)求拋物線的解析式及點(diǎn)B的坐標(biāo);
          (2)求經(jīng)過B、M兩點(diǎn)的直線的解析式,并求出此直線與x軸的交點(diǎn)C的坐標(biāo);
          (3)若點(diǎn)P在拋物線的對(duì)稱軸x=1上運(yùn)動(dòng),請(qǐng)你探索:在x軸上方是否存在這樣的P點(diǎn),使精英家教網(wǎng)以P為圓心的圓經(jīng)過點(diǎn)A,并且與直線BM相切?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,拋物線y=ax2+bx+c交x軸于點(diǎn)A(-3,0),點(diǎn)B(1,0),交y軸于點(diǎn)E(0,-3)精英家教網(wǎng).點(diǎn)C是點(diǎn)A關(guān)于點(diǎn)B的對(duì)稱點(diǎn),點(diǎn)F是線段BC的中點(diǎn),直線l過點(diǎn)F且與y軸平行.直線y=-x+m過點(diǎn)C,交y軸于D點(diǎn).
          (1)求拋物線的函數(shù)表達(dá)式;
          (2)點(diǎn)K為線段AB上一動(dòng)點(diǎn),過點(diǎn)K作x軸的垂線與直線CD交于點(diǎn)H,與拋物線交于點(diǎn)G,求線段HG長(zhǎng)度的最大值;
          (3)在直線l上取點(diǎn)M,在拋物線上取點(diǎn)N,使以點(diǎn)A,C,M,N為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)N的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,拋物線y=ax2+bx+c(a≠0)與x軸兩交點(diǎn)是A(-1,0),B(3,0),則如圖可知y<0時(shí),x的取值范圍是( 。
          A、-1<x<3B、3<x<-1C、x>-1或x<3D、x<-1或x>3

          查看答案和解析>>

          同步練習(xí)冊(cè)答案