日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知△ABC的面積為4,且AB=AC,現(xiàn)將△ABC沿CA方向平移CA的長度,得到△EFA.
          (1)判斷AF與BE的位置關(guān)系,并說明理由;
          (2)若∠BEC=15°,求AC的長.

          【答案】分析:(1)首先連接BF,由△AEF是由△ABC沿CA的方向平移CA長度得到,即可得BF=AC,AB=EF,CA=AE,又由AB=AC,證得AB=BF=EF=AE,根據(jù)由四條邊都相等的四邊形是菱形,即可證得四邊形ABFE是菱形,則可得AF⊥BE;
          (2)首先作BM⊥AC于點M,由AB=AC=AE,∠BEC=15°,求得∠BAC=30°,BM=AB=AC,然后利用△ABC的面積求解方法,即可求得AC的長.
          解答:解:(1)AF⊥BE.
          理由如下:連接BF,
          ∵△AEF是由△ABC沿CA的方向平移CA長度得到,
          ∴BF=AC,AB=EF,CA=AE.
          ∵AB=AC,
          ∴AB=BF=EF=AE.
          ∴四邊形ABFE是菱形.
          ∴AF⊥BE.

          (2)作BM⊥AC于點M.
          ∵AB=AC=AE,∠BEC=15°,
          ∴∠BAC=30°.
          ∴BM=AB=AC.
          ∵S△ABC=4,
          •AC•AC=4,
          ∴AC=4.
          點評:此題考查了菱形的判定與性質(zhì),三角形面積的求解方法等知識.此題難度不大,注意輔助線的作法與數(shù)形結(jié)合思想的應(yīng)用.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知△ABC的面積S△ABC=1.
          在圖1中,若
          AA1
          AB
          =
          BB1
          BC
          =
          CC1
          CA
          =
          1
          2
          ,則S△A1B1C1=
          1
          4
          ;
          在圖2中,若
          AA2
          AB
          =
          BB2
          BC
          =
          CC2
          CA
          =
          1
          3
          ,則S△A2B2C2=
          1
          3
          ;
          在圖3中,若
          AA3
          AB
          =
          BB3
          BC
          =
          CC3
          CA
          =
          1
          4
          ,則S△A3B3C3=
          7
          16

          按此規(guī)律,若
          AA8
          AB
          =
          BB8
          BC
          =
          CC8
          CA
          =
          1
          9
          ,S△A8B8C8=
           

          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知△ABC的面積為4,且AB=AC,現(xiàn)將△ABC沿CA方向平移CA的長度,得到△EFA.
          (1)判斷AF與BE的位置關(guān)系,并說明理由;
          (2)若∠BEC=15°,求AC的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•溫州二模)如圖,已知△ABC的面積是2平方厘米,△BCD的面積是3平方厘米,△CDE的面積是3平方厘米,△DEF的面積是4平方厘米,△EFG的面積是3平方厘米,△FGH的面積是5平方厘米,那么,△EFH的面積是
          4
          4
           平方厘米.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2010•孝感模擬)如圖,已知△ABC的三個頂點的坐標分別為A(-2,2)、B(-5,0)、C(-1,0).
          (1)請直接寫出點A關(guān)于y軸對稱的點的坐標;
          (2)將△ABC繞坐標原點O逆時針旋轉(zhuǎn)90°得到△A1B1C1,再將△A1B1C1以C1為位似中心,放大2倍得到△A2B2C1,請畫出△A1B1C1和△A2B2C1,并寫出一個點A2的坐標.(只畫一個△A2B2C1即可)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知△ABC的三個頂點的坐標分別是A(-7,1),B(-3,3),C(-2,6).
          (1)求作一個三角形,使它與△ABC關(guān)于y軸對稱;
          (2)寫出(1)中所作的三角形的三個頂點的坐標.

          查看答案和解析>>

          同步練習(xí)冊答案