日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖所示,某建筑物有一拋物線形的大門,小強(qiáng)想知道這道門的高度.他先測出門的寬度AB=8m,然后用一根長為4m的小竹竿CD豎直地接觸地面和門的內(nèi)壁,并測得AC=1m.小強(qiáng)畫出了如圖的草圖,請你幫他算一算門的高度OE(精確到0.1m).
          由題意得,拋物線過點(diǎn)A(-4,0)、B(4,0)、D(-3,4),(3分)
          設(shè)y=a(x+4)(x-4),(4分)
          把D(-3,4)代入y=a(x+4)(x-4),
          得4=a(-3+4)(-3-4),
          解得a=-
          4
          7

          ∴y=-
          4
          7
          (x+4)(x-4).(7分)
          令x=0得y=
          64
          7
          ,即(0,
          64
          7
          ),
          ∴OE=
          64
          7
          ≈9.1
          ∴門的高度約為9.1m.(10分)
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖所示,在平面直角坐標(biāo)系中有點(diǎn)A(-1,0),點(diǎn)B(4,0),以AB為直徑的半圓交y軸正半軸于點(diǎn)C.
          (1)求點(diǎn)C的坐標(biāo);
          (2)求過A,B,C三點(diǎn)的拋物線的解析式;
          (3)在(2)的條件下,若在拋物線上有一點(diǎn)D,使四邊形BOCD為直角梯形,求直線BD的解析式;
          (4)設(shè)點(diǎn)M是拋物線上任意一點(diǎn),過點(diǎn)M作MN⊥y軸,交y軸于點(diǎn)N.若在線段AB上有且只有一點(diǎn)P,使∠MPN為直角,求點(diǎn)M的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

          某游樂園要建一個(gè)直徑為20m的圓形噴水池,計(jì)劃在噴水池的中心安裝一個(gè)大的噴水頭,使噴出的水柱中心4m處達(dá)到最高,高度為6m,那么這個(gè)噴水頭應(yīng)設(shè)計(jì)的高度為______m.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖①,在平面直角坐標(biāo)系中,Rt△AOB≌Rt△CDA,且A(-1,0)、B(0,2),拋物線y=ax2+ax-2經(jīng)過點(diǎn)C.
          (1)求拋物線的解析式;
          (2)在拋物線(對稱軸的右側(cè))上是否存在兩點(diǎn)P、Q,使四邊形ABPQ是正方形?若存在,求點(diǎn)P、Q的坐標(biāo),若不存在,請說明理由;
          (3)如圖②,E為BC延長線上一動(dòng)點(diǎn),過A、B、E三點(diǎn)作⊙O′,連接AE,在⊙O′上另有一點(diǎn)F,且AF=AE,AF交BC于點(diǎn)G,連接BF.下列結(jié)論:①BE+BF的值不變;②
          BF
          AF
          =
          BG
          AG
          ,其中有且只有一個(gè)成立,請你判斷哪一個(gè)結(jié)論成立,并證明成立的結(jié)論.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

          如圖,已知拋物線y=
          1
          6
          x2-
          1
          6
          (b+1)x+
          b
          6
          (b是實(shí)數(shù)且b>2)與x軸的正半軸分別交于點(diǎn)A、B(點(diǎn)A位于點(diǎn)B的左側(cè)),與y軸的正半軸交于點(diǎn)C.若在第一象限內(nèi)存在點(diǎn)P,使得四邊形PCOB的面積等于7
          2
          b
          ,且△PBC是以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形.求:
          (1)點(diǎn)A的坐標(biāo)為______.
          (2)求符合要求的點(diǎn)P坐標(biāo)為______.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          已知二次函數(shù)y=x2-2(k+1)x+4k的圖象與x軸分別交于點(diǎn)A(x1,0)、B(x2,0),且-
          3
          2
          <x1-
          1
          2

          (1)求k的取值范圍;
          (2)設(shè)二次函數(shù)y=x2-2(k+1)x+4k的圖象與y軸交于點(diǎn)M,若OM=OB,求二次函數(shù)的表達(dá)式;
          (3)在(2)的條件下,若點(diǎn)N是x軸上的一點(diǎn),以N、A、M為頂點(diǎn)作平行四邊形,該平行四邊形的第四個(gè)頂點(diǎn)F在二次函數(shù)y=x2-2(k+1)x+4k的圖象上,請直接寫出滿足上述條件的平行四邊形的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,拋物線y=-x2+2nx+n2-9(n為常數(shù))經(jīng)過坐標(biāo)原點(diǎn)和x軸上另一點(diǎn)C,頂點(diǎn)在第一象限.
          (1)確定拋物線所對應(yīng)的函數(shù)關(guān)系式,并寫出頂點(diǎn)坐標(biāo);
          (2)在四邊形OABC內(nèi)有一矩形MNPQ,點(diǎn)M,N分別在OA,BC上,A點(diǎn)坐標(biāo)為(2,8)B點(diǎn)坐標(biāo)為(4,8),點(diǎn)Q,P在x軸上.當(dāng)MN為多少時(shí),矩形MNPQ的面積最大,最大面積是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)是(-2,3),過點(diǎn)A作AB⊥y軸,垂足為B,連結(jié)OA,拋物線y=-x2-2x+c經(jīng)過點(diǎn)A,與x軸正半軸交于點(diǎn)C

          (1)求c的值;
          (2)將拋物線向下平移m個(gè)單位,使平移后得到的拋物線頂點(diǎn)落在△OAB的內(nèi)部(不包括△OAB的邊界),求m的取值范圍(直接寫出答案即可).
          (3)將△OAB沿直線OA翻折,記點(diǎn)B的對應(yīng)點(diǎn)B′,向左平移拋物線,使B′恰好落在平移后拋物線的對稱軸上,求平移后的拋物線解析式.
          (4)連接BC,設(shè)點(diǎn)E在x軸上,點(diǎn)F在拋物線上,如果B、C、E、F構(gòu)成平行四邊形,請寫出點(diǎn)E的坐標(biāo)(不必書寫計(jì)算過程).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          已知函數(shù)y1=ax2+bx+c(a≠0)和y2=mx+n的圖象交于(-2,-5)點(diǎn)和(1,4)點(diǎn),并且y1=ax2+bx+c的圖象與y軸交于點(diǎn)(0,3).
          (1)求函數(shù)y1和y2的解析式,并畫出函數(shù)示意圖;
          (2)x為何值時(shí),①y1>y2;②y1=y2;③y1<y2

          查看答案和解析>>

          同步練習(xí)冊答案