日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】2018年春節(jié)期間,云南接待游客約2882萬人,旅游收入約193億元,其中2882萬用科學(xué)記數(shù)法表示為____.

          【答案】2.882×107

          【解析】

          科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點(diǎn)移動了多少位,n的絕對值與小數(shù)點(diǎn)移動的位數(shù)相同.當(dāng)原數(shù)絕對值>10時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).

          解:2882萬用科學(xué)記數(shù)法表示為:2.882×107

          故答案為:2.882×107.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】【問題提出】

          用n根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?

          【問題探究】

          不妨假設(shè)能搭成m種不同的等腰三角形,為探究m與n之間的關(guān)系,我們可以先從特殊入手,通過試驗(yàn)、觀察、類比、最后歸納、猜測得出結(jié)論.

          【探究一】

          (1)用3根相同的木棒搭一個三角形,能搭成多少種不同的等腰三角形?

          此時,顯然能搭成一種等腰三角形.

          所以,當(dāng)n=3時,m=1.

          (2)用4根相同的木棒搭一個三角形,能搭成多少種不同的等腰三角形?

          只可分成1根木棒、1根木棒和2根木棒這一種情況,不能搭成三角形.

          所以,當(dāng)n=4時,m=0.

          (3)用5根相同的木棒搭一個三角形,能搭成多少種不同的等腰三角形?

          若分成1根木棒、1根木棒和3根木棒,則不能搭成三角形.

          若分成2根木棒、2根木棒和1根木棒,則能搭成一種等腰三角形.

          所以,當(dāng)n=5時,m=1.

          (4)用6根相同的木棒搭一個三角形,能搭成多少種不同的等腰三角形?

          若分成1根木棒、1根木棒和4根木棒,則不能搭成三角形.

          若分成2根木棒、2根木棒和2根木棒,則能搭成一種等腰三角形.

          所以,當(dāng)n=6時,m=1.

          綜上所述,可得:表①

          【探究二】

          (1)用7根相同的木棒搭一個三角形,能搭成多少種不同的三角形?

          (仿照上述探究方法,寫出解答過程,并將結(jié)果填在表②中)

          (2)用8根、9根、10根相同的木棒搭一個三角形,能搭成多少種不同的等腰三角形?

          (只需把結(jié)果填在表②中)

          表②

          你不妨分別用11根、12根、13根、14根相同的木棒繼續(xù)進(jìn)行探究,…

          【問題解決】:

          用n根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?(設(shè)n分別等于4k﹣1,4k,4k+1,4k+2,其中k是正整數(shù),把結(jié)果填在表③中)

          表③

          【問題應(yīng)用】:

          用2016根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?(寫出解答過程),其中面積最大的等腰三角形每腰用了 根木棒.(只填結(jié)果)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】圖1、圖2為同一長方體房間的示意圖,圖3為該長方體的表面展開圖.

          (1)蜘蛛在頂點(diǎn)A′處.

          ①蒼蠅在頂點(diǎn)B處時,試在圖1中畫出蜘蛛為捉住蒼蠅,沿墻面爬行的最近路線;

          ②蒼蠅在頂點(diǎn)C處時,圖2中畫出了蜘蛛捉住蒼蠅的兩條路線,往天花板ABCD爬行的最近路線A′GC和往墻面BB′C′C爬行的最近路線A′HC,試通過計算判斷哪條路線更近;

          (2)在圖3中,半徑為10dm的⊙M與D′C′相切,圓心M到邊CC′的距離為15dm,蜘蛛P在線段AB上,蒼蠅Q在⊙M的圓周上,線段PQ為蜘蛛爬行路線,若PQ與⊙M相切,試求PQ長度的范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】水星和太陽的平均距離約為57900000km,用科學(xué)記數(shù)法表示為__________.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,有一塊邊長為6cm的正三角形紙板,在它的三個角處分別截去一個彼此全等的箏形,再沿圖中的虛線折起,做成一個無蓋的直三棱柱紙盒,則該紙盒側(cè)面積的最大值是(

          A.cm2 B.cm2 C.cm2 D.cm2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】閱讀下面材料:

          小偉遇到這樣一個問題:如圖1,在△ABC(其中∠BAC是一個可以變化的角)中,AB=2,AC=4,以BC為邊在BC的下方作等邊△PBC,求AP的最大值.

          小偉是這樣思考的:利用變換和等邊三角形將邊的位置重新組合.他的方法是以點(diǎn)B為旋轉(zhuǎn)中心將△ABP逆時針旋轉(zhuǎn)60°得到△A′BC,連接A′A,當(dāng)點(diǎn)A落在A′C上時,此題可解(如圖2).

          (1)請你回答:AP的最大值是

          (2)參考小偉同學(xué)思考問題的方法,解決下列問題:

          如圖3,等腰Rt△ABC.邊AB=4,P為△ABC內(nèi)部一點(diǎn),請寫出求AP+BP+CP的最小值長的解題思路.

          提示:要解決AP+BP+CP的最小值問題,可仿照題目給出的做法.把△ABP繞B點(diǎn)逆時針旋轉(zhuǎn)60,得到△A′BP′.

          ①請畫出旋轉(zhuǎn)后的圖形

          ②請寫出求AP+BP+CP的最小值的解題思路(結(jié)果可以不化簡).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知一個多邊形的內(nèi)角和等于900,則這個多邊形是(

          A. 五邊形 B. 六邊形 C. 七邊形 D. 八邊形

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,把矩形ABCD沿EF翻折,點(diǎn)B恰好落在AD邊的B′處,若AE=2,DE=6,∠EFB=60°,則矩形ABCD的面積是(
          A.12
          B.24
          C.12
          D.16

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:如圖,把△ABC向上平移3個單位長度,再向右平移2個單位長度,得到△A′B′C′.

          (1)在圖中畫出△A′B′C′;
          (2)寫出A′,B′的坐標(biāo);
          (3)求三角形ABC的面積.

          查看答案和解析>>

          同步練習(xí)冊答案