日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,△ABC中,ABBC,BEAC于點E,ADBC于點D,∠BAD=45°,ADBE交于點F

          1)求證:△ADC≌△BDF;

          2)求證:BF2AE

          【答案】(1)見解析;(2)見解析

          【解析】

          (1)先判定出ABD是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)可得AD=BD,再根據(jù)同角的余角相等求出CAD=CBE,然后利用“角邊角”證明ADC和BDF全等;(2)根據(jù)全等三角形對應(yīng)邊相等可得BF=AC,再根據(jù)等腰三角形三線合一的性質(zhì)可得AC=2AE,從而得證.

          證明:(1)ADBC,BAD=45°,

          ∴△ABD是等腰直角三角形,

          AD=BD,

          BEAC,ADBC,

          ∴∠CAD+ACD=90°,

          CBE+ACD=90°,

          ∴∠CAD=CBE,

          ADC和BDF中,,

          ∴△ADC≌△BDF(ASA);

          (2)∵△ADC≌△BDF,

          BF=AC,

          AB=BC,BEAC,

          AC=2AE,

          BF=2AE.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,將三角形紙片ABC沿AD折疊,使點C落在BD邊上的點E處.若BC=10,BE=2,則AB2AC2的值為 ______

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,由相同邊長的小正方形組成的網(wǎng)格圖形,A、B、C都在格點上,利用網(wǎng)格畫圖:(注:所畫線條用黑色簽字筆描黑)

          1)過點CAB的平行線;

          2)過點BAC的垂線,垂足為點G;過點BAB的垂線,交AC的延長線于H

          3)點BAC的距離是線段 的長度,線段AB的長度是點 到直線 的距離.

          4)線段BGAB的大小關(guān)系為:BG AB(填、“=”),理由是 .

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象的一部分,對稱軸是直線x=1,
          ①b2>4ac;②4a﹣2b+c<0;③不等式ax2+bx+c>0的解集是x>3;④若(﹣2,y1),(5,y2)是拋物線上的兩點,則y1<y2
          上述判斷中,正確的是

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,點AB的坐標(biāo)分別為(﹣1,0),(3,0),現(xiàn)同時將點A,B分別向上平移2個單位,再向右平移1個單位,分別得到對應(yīng)點C,D,連接AC,BD

          1)求出點C,D的坐標(biāo);

          2)設(shè)y軸上一點P0,m),m為整數(shù),使關(guān)于x,y的二元一次方程組有正整數(shù)解,求點P的坐標(biāo);

          3)在(2)的條件下,若Q點在線段CD上,橫坐標(biāo)為n,PBQ的面積SPBQ的值不小于0.6且不大于4,求n的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知△ABC中,∠C=90°,D為AB的中點,E、F分別在AC、BC上,且DE⊥DF.

          求證:AE2+BF2=EF2.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】2008年北京奧運會后,同學(xué)們參與體育鍛煉的熱情高漲.為了解他們平均每周的鍛煉時間,小明同學(xué)在校內(nèi)隨機(jī)調(diào)查了50名同學(xué),統(tǒng)計并制作了如下的頻數(shù)分布表和扇形統(tǒng)計圖.根據(jù)上述信息解答下列問題:

          (1)m= , n=;
          (2)在扇形統(tǒng)計圖中,D組所占圓心角的度數(shù)為度;
          (3)全校共有3000名學(xué)生,估計該校平均每周體育鍛煉時間不少于6小時的學(xué)生約有多少名?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在ABC中,AB=AC,BDAC于D,CEAB于E,BD、CE相交于F.

          求證:AF平分∠BAC.

          【答案】證明見解析.

          【解析】試題分析:先根據(jù)AB=AC,可得∠ABC=ACB,再由垂直,可得90°的角,在BCEBCD中,利用內(nèi)角和為180°,可分別求∠BCE和∠DBC,利用等量減等量差相等,可得FB=FC,再易證ABF≌△ACF,從而證出AF平分∠BAC

          試題解析:證明:∵AB=AC(已知)

          ∴∠ABC=ACB(等邊對等角).

          BD、CE分別是高,

          BDAC,CEAB(高的定義).

          ∴∠CEB=BDC=90°.

          ∴∠ECB=90°ABC,DBC=90°ACB.

          ∴∠ECB=DBC(等量代換).

          FB=FC(等角對等邊),

          ABFACF中,

          ,

          ABFACF(SSS),

          ∴∠BAF=CAF(全等三角形對應(yīng)角相等),

          AF平分∠BAC.

          型】解答
          結(jié)束】
          23

          【題目】如圖,在△ABC中,AC=BC,∠C=90°,AD△ABC的角平分線,DE⊥AB,垂足為E

          1)求證:CD=BE;

          2)已知CD=2,求AC的長;

          3)求證:AB=AC+CD

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】計算題
          (1)計算:(﹣2)1﹣(2017﹣π)0+sin30°;
          (2)化簡:

          查看答案和解析>>

          同步練習(xí)冊答案