日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖1,在正方形ABCD中,P是對角線BD上的點,點E在AB上,且PA=PE.

          (1)求證:PC=PE;

          (2)求CPE的度數(shù);

          (3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,試探究CPEABC之間的數(shù)量關(guān)系,并說明理由.

          【答案】(1)見解析;(2)EPC=90°;(3)ABC+EPC=180°

          【解析】

          試題分析:(1)先證出ABP≌△CBP,得PA=PC,由于PA=PE,得PC=PE;

          (2)由ABP≌△CBP,得BAP=BCP,進而得DAP=DCP,由PA=PC,得到DAP=E,DCP=E,最后CPF=EDF=90°得到結(jié)論;

          (3)借助(1)和(2)的證明方法容易證明結(jié)論.

          (1)證明:在正方形ABCD中,AB=BC,

          ABP=CBP=45°,

          ABPCBP中,

          ∴△ABP≌△CBP(SAS),

          PA=PC,

          PA=PE,

          PC=PE

          (2)解:由(1)知,ABP≌△CBP

          ∴∠BAP=BCP

          PA=PE

          ∴∠PAE=PEA,

          ∴∠CPB=AEP

          ∵∠AEP+PEB=180°

          ∴∠PEB+PCB=180°,

          ∴∠ABC+EPC=180°,

          ∵∠ABC=90°,

          ∴∠EPC=90°;

          (3)ABC+EPC=180°,

          理由:解:在菱形ABCD中,AB=BC,ABP=CBP=60°,

          ABPCBP中,

          ,

          ∴△ABP≌△CBP(SAS),

          ∴∠BAP=BCP,

          PA=PE,

          ∴∠DAP=DCP

          ∴∠PAE=PEA,

          ∴∠CPB=AEP,

          ∵∠AEP+PEB=180°

          ∴∠PEB+PCB=180°,

          ∴∠ABC+EPC=180°

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,的坐標(biāo)為,過點作不軸的垂線交直于點以原點為圓心,的長為半徑斷弧交軸正半軸于點;再過點軸的垂線交直線于點,以原點為圓心,的長為半徑畫弧交軸正半軸于點;…按此作法進行下去,的長是____________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,RtABC中,∠ACB=90°,斜邊AB邊上的高CD與角平分線AE交于點F,經(jīng)過垂足D的直線分別交直線CABC于點M,N

          1)若AC=3BC=4,AB=5,求CD的長;

          2)當(dāng)∠AMN=32°,∠B=38°時,求∠MDB的度數(shù);

          3)當(dāng)∠AMN=BDN時,寫出圖中所有與∠CDN相等的角,并選擇其中一組進行證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,ABC的三個頂點分別為A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).

          (1)把ABC向上平移3個單位后得到A1B1C1,請畫出A1B1C1并寫出點B1的坐標(biāo);

          (2)已知點A與點A2(2,1)關(guān)于直線l成軸對稱,請畫出直線lABC關(guān)于直線l對稱的A2B2C2,并直接寫出直線l的函數(shù)解析式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2+2ax﹣3a(a>0)與x軸交于A,B兩點(點A在點B的左側(cè)).

          (1)求拋物線的對稱軸及線段AB的長;

          (2)拋物線的頂點為P,若∠APB=120°,求頂點P的坐標(biāo)及a的值;

          (3)若在拋物線上存在一點N,使得∠ANB=90°,結(jié)合圖象,求a的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,直線l:y=-x,點A1坐標(biāo)為(-4,0).過點A1作x軸的垂線交直線l于點B1,以原點O為圓心,OB1長為半徑畫弧交x軸負(fù)半軸于點A2,再過點A2作x軸的垂線交直線l于點B2,以原點O為圓心,OB2長為半徑畫弧交x軸負(fù)半軸于點A3,…,按此做法進行下去,點A2018的坐標(biāo)為_______

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】概念學(xué)習(xí):規(guī)定:求若干個相同有理數(shù)(均不為0)的除法運算叫做除方,如,等,類比有理數(shù)的乘方,我們把記作,讀作“2的圈3次方記作,讀作的圈4次方,一般地,把記作讀作“a的圈n次方

          初步探究:

          1)直接寫出計算結(jié)果________________;

          2)關(guān)于除方,下列說法不正確的是________

          A.任何非零數(shù)的圈2次方都等于1

          B.對于任何正整數(shù)n

          C.

          D.負(fù)數(shù)的圈奇次方結(jié)果是負(fù)數(shù),負(fù)數(shù)的圈偶次方結(jié)果是正數(shù)

          深入思考:

          我們知道有理數(shù)的減法運算可以轉(zhuǎn)化為加法運算,除法運算可以轉(zhuǎn)化為乘法運算,有理數(shù)的除方運算如何轉(zhuǎn)化為乘方運算呢?

          1)試一試:將下列運算結(jié)果直接寫成冪的形式:______;____________

          2)想一想:將一個非零有理數(shù)a的圈n次方寫成冪的形式為________

          3)算一算:

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某中學(xué)七年級開展演講比賽,學(xué)校決定購買一些筆記本和鋼筆作為獎品.現(xiàn)了解情況如下:甲、乙兩家商店出售兩種同樣品牌的筆記本和鋼筆.筆記本定價為每本20元,鋼筆每支定價5元,經(jīng)洽談后,甲店每買一本筆記本贈一支鋼筆;乙店全部按定價的9折優(yōu)惠.七年級需筆記本20本,鋼筆若干支(不小于20支).問:

          1)如果購買鋼筆不小于20)支,則在甲店購買需付款 ______ 元,在乙店購買需付款 _______________ 元.(用x的代數(shù)式表示)

          2)當(dāng)購買鋼筆多少支時,在兩店購買付款一樣?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,甲、乙兩座建筑物的水平距離,從甲的頂部處測得乙的頂部處的俯角為48°,測得底部處的俯角為58°,求乙建筑物的高度.(參考數(shù)據(jù):,,.結(jié)果取整數(shù))

          查看答案和解析>>

          同步練習(xí)冊答案