日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】為了加強(qiáng)公民的節(jié)水意識(shí),合理利用水資源,各地采取價(jià)格調(diào)控手段達(dá)到節(jié)約用水的目的,某市規(guī)定如下用水收費(fèi)標(biāo)準(zhǔn):每戶每月的用水量不超過(guò)立方米時(shí),水費(fèi)按每立方米元收費(fèi),超過(guò)立方米時(shí),不超過(guò)的部分每立方米仍按元收費(fèi),超過(guò)的部分每立方米按元收費(fèi),該市某戶今年月份的用水量和所交水費(fèi)如下表所示:

          月份

          用水量(

          收費(fèi)(元)

          設(shè)某戶每月用水量(立方米),應(yīng)交水費(fèi)(元)

          的值,當(dāng)時(shí),分別寫(xiě)出的函數(shù)關(guān)系式.

          若該戶月份用水量為立方米,求該月份水費(fèi)多少元?

          【答案】1y=6x-27;(2元.

          【解析】

          (1)依照題意,當(dāng)x6時(shí),y=ax;當(dāng)x6時(shí),y=6a+c(x-6),分別把對(duì)應(yīng)的x,y值代入求解可得解析式;

          (2)x=8代入(1)題中x>6的函數(shù)關(guān)系式,求出y的值即可.

          解:(1)當(dāng)時(shí),設(shè)

          時(shí),,,

          ,

          當(dāng)時(shí),的函數(shù)關(guān)系式為

          當(dāng)時(shí),設(shè)

          時(shí),,,

          當(dāng)時(shí), 的函數(shù)關(guān)系式為y=6x-27;

          (2)當(dāng)時(shí),,

          該戶11月份水費(fèi)是.

          故答案為:(1)y=6x-27;(2).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】怡然美食店的A、B兩種菜品,每份成本均為14元,售價(jià)分別為20元、18元,這兩種菜品每天的營(yíng)業(yè)額共為1120元,總利潤(rùn)為280元.

          1)該店每天賣出這兩種菜品共多少份?

          2)該店為了增加利潤(rùn),準(zhǔn)備降低A種菜品的售價(jià),同時(shí)提高B種菜品的售價(jià),售賣時(shí)發(fā)現(xiàn),A種菜品售價(jià)每降0.5元可多賣1份;B種菜品售價(jià)每提高0.5元就少賣1份,如果這兩種菜品每天銷售總份數(shù)不變,那么這兩種菜品一天的總利潤(rùn)最多是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】閱讀材料并解決問(wèn)題:

          1)數(shù)學(xué)課上,老師提出如下問(wèn)題:

          觀察下列算式:

          ;

          若字母表示自然數(shù),用含的式子表示觀察得到的規(guī)律是

          2)小云同學(xué)解決完老師提出的問(wèn)題后,又繼續(xù)研究,發(fā)現(xiàn):

          ①當(dāng)表示負(fù)整數(shù)且時(shí),上述規(guī)律仍舊成立;

          ②當(dāng)表示分?jǐn)?shù)且時(shí),上述規(guī)律仍舊成立.

          請(qǐng)你對(duì)小云的兩個(gè)發(fā)現(xiàn)進(jìn)行驗(yàn)證,每個(gè)發(fā)現(xiàn)舉出一個(gè)算式;

          3)請(qǐng)你參照小云同學(xué)的研究思路,進(jìn)行猜想,驗(yàn)證、歸納,當(dāng)時(shí), (用含的代數(shù)式表示);

          4)進(jìn)一步進(jìn)行猜想、驗(yàn)證、歸納,當(dāng)為有理數(shù))時(shí), (用含,的代數(shù)式表示)。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某廠按用戶的月需求量()完成一種產(chǎn)品的生產(chǎn),其中.每件的售價(jià)為18萬(wàn)元,每件的成本(萬(wàn)元)是基礎(chǔ)價(jià)與浮動(dòng)價(jià)的和,其中基礎(chǔ)價(jià)保持不變,浮動(dòng)價(jià)與月需求量()成反比.經(jīng)市場(chǎng)調(diào)研發(fā)現(xiàn),月需求量與月份(為整數(shù),)符合關(guān)系式(為常數(shù)),且得到了表中的數(shù)據(jù).

          月份()

          1

          2

          成本(萬(wàn)元/件)

          11

          12

          需求量(件/月)

          120

          100

          (1)滿足的關(guān)系式,請(qǐng)說(shuō)明一件產(chǎn)品的利潤(rùn)能否是12萬(wàn)元;

          (2),并推斷是否存在某個(gè)月既無(wú)盈利也不虧損;

          (3)在這一年12個(gè)月中,若第個(gè)月和第個(gè)月的利潤(rùn)相差最大,求

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某班數(shù)學(xué)科代表小芳對(duì)本年級(jí)同學(xué)參加課外興趣小組活動(dòng)情況進(jìn)行隨機(jī)抽樣調(diào)查,根據(jù)調(diào)查數(shù)據(jù)小芳同學(xué)還制作了參加課外興趣小組活動(dòng)情況的兩個(gè)統(tǒng)計(jì)圖(見(jiàn)下圖)

          (1)此次被調(diào)查的人數(shù)是多少?

          (2)將圖補(bǔ)充完整;

          (3)求出圖中表示寫(xiě)作興趣小組的扇形圓心角度數(shù);

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在四邊形中,,頂點(diǎn)是原點(diǎn),頂點(diǎn)軸上,頂點(diǎn)的坐標(biāo)為,,,點(diǎn)從點(diǎn)出發(fā),以的速度向點(diǎn)運(yùn)動(dòng),點(diǎn)從點(diǎn)同時(shí)出發(fā),以的速度向點(diǎn)運(yùn)動(dòng).規(guī)定其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng);從運(yùn)動(dòng)開(kāi)始,設(shè)點(diǎn)運(yùn)動(dòng)的時(shí)間為.

          求直線的函數(shù)解析式;

          當(dāng)為何值時(shí),四邊形是矩形?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知矩形紙片ABCD的兩邊ABBC=21,過(guò)點(diǎn)B折疊紙片,使點(diǎn)A落在邊CD上的點(diǎn)F處,折痕為BE.若AB的長(zhǎng)為4,則EF的長(zhǎng)為( 。

          A. 8-4B. 2C. 4 6D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖1,在正方形ABCD中,點(diǎn)EF分別是AC,BC上的點(diǎn),且滿足DEEF,垂足為點(diǎn)E,連接DF

          1)求∠EDF= (填度數(shù));

          2)延長(zhǎng)DEAB于點(diǎn)G,連接FG,如圖2,猜想AGGF,FC三者的數(shù)量關(guān)系,并給出證明;

          3)①若AB=6,GAB的中點(diǎn),求△BFG的面積;

          ②設(shè)AG=a,CF=b,△BFG的面積記為S,試確定Sab的關(guān)系,并說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,拋物線軸交于A、B兩點(diǎn),與軸交于點(diǎn)C,拋物線的對(duì)稱軸交軸于點(diǎn)D,已知點(diǎn)A(-1,0),點(diǎn)C(0,2).

          (1)求拋物線的函數(shù)解析式;

          (2)線段BC上有一動(dòng)點(diǎn)P,過(guò)點(diǎn)P軸的平行線,交拋物線于點(diǎn)Q,求線段PQ的最大值;

          (3)若點(diǎn)E軸上,點(diǎn)F在拋物線上.是否存在以C、D、E、F為頂點(diǎn)且以CD為一邊的平行四邊形?若存在,請(qǐng)你求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案