日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知△ABD和△CBD關于直線BD對稱(點A的對稱點是點C),點E、F分別是線段BC和線段BD上的點,且點F在線段EC的垂直平分線上,聯(lián)結AF、AE,交BD于點G.
          (1)如圖(1),求證:∠EAF=∠ABD;

          圖(1)
          (2)如圖(2),當AB=AD時,M是線段AG上一點,聯(lián)結BM、ED、MF,MF的延長線交ED于點N,∠MBF=∠BAF,AF=AD,試探究線段FM和FN之間的數(shù)量關系,并證明你的結論.

          圖(2)
          (1)見解析;(2)FM=FN.

          試題分析:(1)如圖1,連接FE、FC,構建全等三角形△ABF≌△CBF(SAS),則易證∠BAF=∠2,F(xiàn)A=FC;根據(jù)垂直平分線的性質、等量代換可知FE=FA,∠1=∠BAF,則∠5=∠6.然后由四邊形內(nèi)角和是360°、三角形內(nèi)角和定理求得∠5+∠6=∠3+∠4,則∠5=∠4,即∠EAF=∠ABD;
          (2)FM=FN.理由如下:由△AFG∽△BFA,易得∠AGF=∠BAF,所以結合已知條件和圖形得到∠MBG=∠BMG.易證△AGF∽△DGA,則對應邊成比例:.即.設GF=2a(a>0),AG=3a,則GD=a,F(xiàn)D=a;利用平行線(BE∥AD)截線段成比例易得,則.設EG=2k(k>0),所以BG=MG=3k.如圖2,過點F作FQ∥ED交AE于點Q.則又由FQ∥ED,易證得,所以FM=FN.
          試題解析:
          證明:如圖1 連接FE、FC

          ∵點F在線段EC的垂直平分線上,
          ∴FE=FC   ∴∠l=∠2
          ∵△ABD和△CBD關于直線BD對稱.
          ∴AB=CB,∠4=∠3,又BF=BF
          ∴△ABF≌△CBF,∴∠BAF=∠2,F(xiàn)A=FC
          ∴FE=FA,∠1=∠BAF.
          ∴∠5=∠6,
          ∵∠l+∠BEF=180º,∴∠BAF+∠BEF=180º
          ∵∠BAF+∠BEF+∠AFE+∠ABE=360º
          ∴∠AFE+∠ABE=180º
          又∵∠AFE+∠5+∠6=180º,
          ∴∠5+∠6=∠3+∠4
          ∴∠5=∠4,即∠EAF=∠ABD
          解:FM=FN
          證明:如圖2,

          由(1)可知∠EAF=∠ABD,
          又∵∠AFB=∠GFA ∴△AFG∽△BFA
          ∴∠AGF=∠BAF
          又∵∠MBF=∠BAF,∴∠MBF=∠AGF
          又∵∠AGF=∠MBG+∠BMG∴∠MBG=∠BMG
          ∴BG=MG
          ∵AB=AD ∴∠ADB=∠ABD=∠EAF
          又∵∠FGA=∠AGD.∴△AGF∽△DGA.

          ∵AF=AD

          設GF=2a,則AG=3a,
          ∴GD=a,∴FD=DG-GF==a
          ∵∠CBD=∠ABD,∠ABD=∠ADB,∴∠CBD=∠ADB.
          .∴,
          設EG=2k,則MG=BG=3k
          過點F作FQ∥ED交AE于Q,
          .∴,∴GQ=EG=
          ∴QE=   ∴MQ=MG+GQ=3k+=
          ∵FQ∥ED,
          .
          ∴FM=FN.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源:不詳 題型:填空題

          如圖,等邊三角形ABC的邊長為3,P為BC上一點,且BP=1,D為AC上一點,若∠APD=60,則CD的長為_________________.

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:填空題

          在同一時刻,身高1.6米的小強在陽光下的影長為0.8米,一棵大樹的影長為4.8米,則樹的高度為       _米.

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:填空題

          若5x=8y,則x:y=         .

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:解答題

          如圖,在平行四邊形ABCD中,E為CD上一點,連結AE,BD,且AE,BD交于點F,SDEF∶SABF=4∶25,求DE∶EC的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:填空題

          若兩個三角形的相似比為2∶3,則這兩個三角形周長的比為           

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:解答題

          如圖,矩形ABCD中,AD=3厘米,AB=a厘米(a>3).動點M,N同時從B點出發(fā),分別沿B?A,B?C運動,速度是1厘米/秒.過M作直線垂直于AB,分別交AN,CD于P,Q.當點N到達終點C時,點M也隨之停止運動.設運動時間為t秒.

          (1)若a=4厘米,t=1秒,則PM= _________ 厘米;
          (2)若a=5厘米,求時間t,使△PNB∽△PAD,并求出它們的相似比;
          (3)若在運動過程中,存在某時刻使梯形PMBN與梯形PQDA的面積相等,求a的取值范圍;
          (4)是否存在這樣的矩形:在運動過程中,存在某時刻使梯形PMBN,梯形PQDA,梯形PQCN的面積都相等?若存在,求a的值;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:計算題

          如圖D,E分別是△ABC的AB,AC邊上的點,且DE∥BC,AD∶AB=1∶4,

          (1)證明:△ADE∽△ABC;
          (2)當DE=2,求BC的長.

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:填空題

          如圖,已知等腰△ABC的面積為16cm2,點D,E分別是AB,AC邊的中點,則梯形DBCE的面積為___     ___cm2

          查看答案和解析>>

          同步練習冊答案