日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 把兩個直角邊長分別為3、4與9、12的Rt△ADE和Rt△ABC按照如圖所示的位置放置,已知DE=4,AC=12,且E,A,C三點(diǎn)在同一直線上,連接BD,取BD的中點(diǎn)M,連接ME,MC,則△EMC與△DAB面積的比值為( )

          A.1
          B.
          C.
          D.
          【答案】分析:過D作DF⊥BC于F,取EC的中點(diǎn)N,連接MN,得出四邊形DECF是矩形,求出DF=EC=15,CF=DE=4,求出AB=15,AD=5,BD=5,求出∠DAB=90°,求出△DAB的面積是×AD×AB=×5×15,根據(jù)梯形中位線得出MN∥DE,MN=(DE+BC)=,推出MN⊥EC,求出△MEC的面積是×EC×MN=,代入求出即可.
          解答:解:
          過D作DF⊥BC于F,取EC的中點(diǎn)N,連接MN,
          ∵∠DEA=∠BCE=∠DFC=90°,
          ∴四邊形DECF是矩形,
          ∴DF=EC=3+12=15,CF=DE=4,
          ∴BF=9-4=5,
          在Rt△BAC中,BC=9,AC=12,由勾股定理得:AB=15,
          同理AD=5,
          在Rt△DFB中,DF=15,BF=5,由勾股定理得BD=5,
          ∵AD=5,AB=15,
          ∴AD2+AB2=25+225=250,BD2=250,
          ∴AD2+AB2=BD2
          ∴∠DAB=90°,
          即△DAB的面積是×AD×AB=×5×15,
          ∵∠DEA=∠BCE=90°,
          ∴DE∥BC,
          ∵M(jìn)為BD中點(diǎn),N為EC中點(diǎn),
          ∴MN∥DE,MN=(DE+BC)=×(4+9)=,
          ∴MN⊥EC,
          ∴△MEC的面積是×EC×MN=×(3+12)×=
          ∴△EMC與△DAB面積的比是(×5×15):=13:10,
          故選B.
          點(diǎn)評:本題考查了梯形的性質(zhì),梯形的中位線,三角形的面積,等腰直角三角形等知識點(diǎn)的應(yīng)用,通過做此題培養(yǎng)了學(xué)生運(yùn)用定理進(jìn)行計(jì)算的能力,題目比較好,但有一定的難度.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖所示,有兩種形狀不同的直角三角形紙片各兩塊,其中一種紙片的兩條直角邊長都為3,另一種紙片的兩條直角邊長分別為1和3.圖1、圖2、圖3是三張形狀、大小完全相同的方格紙,方格紙中的每個小正方形的邊長均為1.
          (1)請用三種方法(拼出的兩個圖形只要不全等就認(rèn)為是不同的拼法)將圖中所給四塊直角三角形紙片拼成平行四邊形(非矩形),每種方法要把圖中所給的四塊直角三角形紙片全部用上,互不重疊且不留空隙,并把你所拼得的圖形按實(shí)際大小畫在圖1,圖2,圖3的方格紙上(要求:所畫圖形各頂點(diǎn)必須與方格紙中的小正方形頂點(diǎn)重合;畫圖時,要保留四塊直角三角形紙片的拼接痕跡);
          (2)三種方法所拼得的平行四邊形的面積是否是定值?若是定值,請直接寫出這個定值;若不是定值,請直接寫出三種方法所拼得的平行四邊形的面積各是多少;
          (3)三種方法所拼得的平行四邊形的周長是否是定值?若是定值,請直接寫出這個定值;若不是定值,請直接寫出三種方法所拼得的平行四邊形的周長各是多少.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•拱墅區(qū)一模)把兩個直角邊長分別為3、4與9、12的Rt△ADE和Rt△ABC按照如圖所示的位置放置,已知DE=4,AC=12,且E,A,C三點(diǎn)在同一直線上,連接BD,取BD的中點(diǎn)M,連接ME,MC,則△EMC與△DAB面積的比值為( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:單選題

          把兩個直角邊長分別為3、4與9、12的Rt△ADE和Rt△ABC按照如圖所示的位置放置,已知DE=4,AC=12,且E,A,C三點(diǎn)在同一直線上,連接BD,取BD的中點(diǎn)M,連接ME,MC,則△EMC與△DAB面積的比值為


          1. A.
            1
          2. B.
            數(shù)學(xué)公式
          3. C.
            數(shù)學(xué)公式
          4. D.
            數(shù)學(xué)公式

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          如圖所示,有兩種形狀不同的直角三角形紙片各兩塊,其中一種紙片的兩條直角邊長都為3,另一種紙片的兩條直角邊長分別為1和3.圖1、圖2、圖3是三張形狀、大小完全相同的方格紙,方格紙中的每個小正方形的邊長均為1.
          (1)請用三種方法(拼出的兩個圖形只要不全等就認(rèn)為是不同的拼法)將圖中所給四塊直角三角形紙片拼成平行四邊形(非矩形),每種方法要把圖中所給的四塊直角三角形紙片全部用上,互不重疊且不留空隙,并把你所拼得的圖形按實(shí)際大小畫在圖1,圖2,圖3的方格紙上(要求:所畫圖形各頂點(diǎn)必須與方格紙中的小正方形頂點(diǎn)重合;畫圖時,要保留四塊直角三角形紙片的拼接痕跡);
          (2)三種方法所拼得的平行四邊形的面積是否是定值?若是定值,請直接寫出這個定值;若不是定值,請直接寫出三種方法所拼得的平行四邊形的面積各是多少;
          (3)三種方法所拼得的平行四邊形的周長是否是定值?若是定值,請直接寫出這個定值;若不是定值,請直接寫出三種方法所拼得的平行四邊形的周長各是多少.

          查看答案和解析>>

          同步練習(xí)冊答案